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1 
QUANTUM EFFECTS I N  ELASTIC MOLECULAR SCATTERING 

T 

I 

I. Introduct ion 

Observations of elastic s c a t t e r i n g  of atoms and molecules may 

be accounted for ,  t o  a large extent,  by c l a s s i c a l  mechanics along:, 

However, a number of important f e a t u r e s  of t he  s c a t t e r i n g  behavior 

r equ i r e  a quantum mechanical i n t e r p r e t a t i o n ;  it i s  these  which comprise 

t h e  sub jec t  matter of t h i s  chapter. 

Preparatory t o  a d e t a i l e d  discussi.on w e  s h a l l  o u t l i n e  t h e  main 

po in t s  of -d'dqfference between the c l a s s i c a l  and quantum -.results. We 

w i l l  compare t h e  c lass ical  with t h e  quantum p red ic t ions  i n  each case; 

a n t i c i p a t i n g  somewhat the f i n a l  conclusions, i t  i s  found q u i t e  

genera l ly  t h a t  experiment accords with t h e  l a t t e r ,  

F i r s t  w e  consider t h e  d i f f e r e n t i a l  c ros s  sec t ions ,  designated &@I, f o r  e l a s t i c  s c a t t e r i n g  by a rea l i s t ic  i n t e r -  rm b 
i 

molecular p o t e n t i a l ,  The purely classical d e s c r i p t i o n  y i e l d s  a w e l l -  

known unphysical s i n g u l a r i t y  i n  t he  forward s c a t t e r i n g ,  while  t h e  

quantum treatment p m d i c t s  a f i n i t e  I.(O) e The classical  inverse- 

power divergence i n  t h e  low-angle s c a t t e r i n g ,  ~(0)'OC 0 , i s  - 7/3 

-c e= 
replaced by a well-behaved small-angle dependence , e J 

according t o  t h e  quantum treatment. The c l a s s i c a l  smooth dependence 

of d i f f e r e n t i a l  c ros s  s e c t i o n  upon s c a t t e r i n g  angle i s  t o  be 

con t r a s t ed  with t h e  s t rong ly  o s c i l l a t o r y  deBtoglie i n t e r f e r e n c e  

p a t t e r n  i n  I(0) predicted by quantum theory. 

Wi h regard t o  t h e  t o t a l  e l a s t i c  cross  sec t ion ,  designated 6 
Q(vr) o r  c ( v r )  , the(  c l a s s i c a l  low angle divergence noted above 
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leads t o  an i n f i n i t e  value, while t h e  quantum theory c o r r e c t l y  y i e l d s  

a f i n i t e  Q . The simplest  quantum mechanical treatment,  considering 

only t h e  long-range r-6 a t t r a c t i v e  p a r t  of t h e  in t e rac t ion ,  accounts 

f o r  t h e  main pa r t  of t h e  dependence of t h e  c ross  s e c t i o n  upon r e l a t i v e  

. A more complete quantupr ana lys i s  taking -4s veloc i ty ,  QOC vr 

cognizance of t he  a t t r a c t i v e  p o t e n t i a l  w e l l ,  p r ed ic t s  extrema 

(resonant behavior) i n  Q(vr) and suggests t h e i r  r e l a t i o n  t o  the  

bound s t a t e s  of the  composite system. None of these  f ea tu res  a re  

encompassed within t h e  c l a s s i c a l  framework, 

I n  the d iscuss ion  which follows, t h e  emphasis w i l l  be upon the  

deviat ions from c l a s s i c a l  behavior predicted by t h e  quantum mechanical 

w and semiclassical  treatments.  

Most of t h e  quantum e f f e c t s  with which w e  s h a l l  be concerned w 
may be t rea ted  advantageously using t h e  so-cal led "semiclassical  

approximation", va l id  when t h e  deBroglie wavelength of t h e  c o l l i d i n g  

system i s  comparable t o  o r  less than t h e  "range" of t h e  intermolecular  

forces .  For very low energy c o l l i s i o n s  where t h i s  condi t ion no 

longer obtains a f u l l  quantum mechanical treatment is required.  
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11. Resume of Classical Treatrnenwof Potential Scattering 

We assume an orientation-averaged, spherically symmetrical 

potential V(r) with a long-range attraction, an attractive well 

and short-range repulsion V . 

is often convenient to wr,:e V(r) in dimensionless form 
* 

VCr) = E V (x); here E is the depth of the attractive well; 

x = r/Q , where Q is a characteristic length, here the zero of 

the potential (an alternative choice for a characteristic length 

is rm , the position of the minimum in V(r)). Any potentialwfth 

a mbnirnum must contain at least two parameters; thus the function 

V e often includes a number of constants governing the shape of the 

potential. 

interaction of ground state atoms and molecules include the Lennard- 

Jones (n,6), the Exp .( oc , 6), the Morse ( p ) , the Kihara 

Commonly b e d  forms of the potential describing the 

( O C ,  12, 6) and others, discussed in standard works8 The simplest 

potential capable of accounting for the gross observed features of 

molecular scattering is the La-J. (12,6) function, for which 

V (x) = 4(x - x ). For the purpose of numerical or graphical 

illustration of some of the subsequent relationships between the 

potential, the angular deflection function and th8 scattering cross 

sections, we shall often employ the L.-J .  (12,6) function, Of 

* -12 -6 

course, the main body of the formalism itself is quite general and 

may be applied to any well-behaved, realistic central potential. 

- - _ - -  

I 
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From elementary considerations of energy and momentum conservation 

one obtainsvan explicit expression for the classical deflection 

function, e (or 1. 

(11.1) 

(11.2) 

here b i s  the impact parameter, E the initial relative kinetic 

energy or "collision energy" , where ,a is the 

reduced mass and v the magnitude of the relative ve1ocity)and 

is the distance of closest approach in the encounter, or the 

"classical turning point" of the motion, seen to be the outermost 

zero of f=(r). It is recalled that the deflection functiop 8 
is positive for net repulsive and negative for net attractive 

trajectories ; the observable scattering angle is 8 sa 8 I with 

( E = +,a 

t 

o c e f c  

deflection function upon the reduced impact parameter p s 
In Fig. 1 is shown a typical curve of the dependence of the 

for a definite value of the reduced collision energy 

The positive branch is gssociated with domination of repulsion, the 

negative branch with predominance of the attractive forces. 

K z E/€ z . f . 6 ,  

The differential solid-angle scattering cross section is 

expressiblewdirectly in terms of the deflection function by 
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? 

(11.3) 

where the summation is over the three possible regions of the deflection 

function confributing to the scattering at an angle 8 . The forward 

scattering singularity previously mentioned is immediately evident 

from Eq. 3. A less obvious classical singularity, pointed out by 

Mason v , occurs at 6 = 6,. 

"rainbow effectff. 

deflection function contributes to the Scattering, while three regions 

do so for e <  O r .  

singularity in the classical differential cross section at the rainbow 

(where A @  = 0 ) ;  it has been termepthe 

It is seen that for e>@, only one region of the 

Thus there is a discontinuity as well as a 

angle (this angle corresponds to the trajectory of maximum attraction 

between the ,interacting particles). 

In certain applications it is convenient to deal with a 

&@ expressed in units An differential cross section, i.e., 

"reduced" 

of era 
sqmetimes designated r*(e) , Eq. 3 may be re-written, introducing 

other dimensionless parameters, as follows 

where 

impact 

A 

(11.4) 

c I cos (9 , B = / f / 2 h  , and p Z &/C (the reduced 

parameter). 

suitable graphical presentation of Eq. 4 is shown in Fig. 2 

(obtained directly from the deflection function of Fig. 1); it may be 

designated a BC plot. A t  any value of 0 (or C }, the classical 
$ 1  
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reduced d i f f e r e n t i a l  cross  s e c t i o n  

absolu te  values of t h e  s lopes of t h e  cont r ibu t ing  branches of t h e  

plot .  The forward s i n g u l a r i t y  (C = 1) as w e l l  as t h e  rainbow 

s ingu la r i ty  and d i scon t inu i ty  are immediately obvious. 

11)(6) is given by t h e  sum of t h e  

BC 

w 
Fig. 3 shows a polar  p l o t  of I@) corresponding t o  t h e  example 

of Fig. 2, Suggested but not  shown I s  t h e  s t rong  forward divergence; 

the  rainbow e f f e c t  i s  c l e a r l y  seen. 

Returning t o  t h e  d e f l e c t i o n  function, given by Eq. 1, i t  is 

w e l l  known V t h a t  except f o r  t r i v i a l  p o t e n t i a l  funct ions numerical 

in tegra t ion  is required t o  eva lua te  e(hE) and thus dele) x r  
i n  t h e  general case. However, f o r  small angles one may employ t h e  

Kennardwapproximation f o r  t h e  d e f l e c t i o n  funct ion,  For l a rge  b 

(and thus small 8 ), where and v(G)/& 41 , F(r)  may be 

s u i t a b l y  expanded and t h e  in t eg ra t ion  f o r  8 r e a d i l y  accomplished. 

($1 -s For a po ten t i a l  with a long-range a t t r a c t i o n  of the  form v= -c  r 

r,"& 

v one obtains 

(11.5) 

and 

, 

8 

8 

* 
For t h e  important p r a c t i c a l  case of s = 6, f(r)= 3*/r4 and 
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(11.6') 

Spec ia l i z ing  f o r  t h e  L. -J. (12,6) po ten t i a l ,  f o r  which 

w e  obt&n t h e  law-angle reduced d i f f e r e n t i a l  c ros s  sec t ion :  

C'6)= V € r 6  

Thus a log-log p l o t  of d%! or  I"(e,, vs. 6 should e x h i b i t  

l i n e a r  l i m i t i n g  (low angle) behavior, with a s lope  of -Z( I + $1 . 
Fig,  4 shows a log-1% I*(O) plo t  corresponding t o  t h e  example of 

Fig. 3. The Contipuously increasing p o s i t i v e  d e v i a t i o n  of 1%) from 

t h e  limiting behavior, out t o  the  rainbow angle, is q u i t e  genera l  f o r  a 

realist ic p o t e n t i a l  with a w e l l .  

Thus the in f luence  of the short-range fo rces  i s  m o s t  e a s i l y  

assessed by examining t h e  angular dependence of t h e  r a t i o  EP'f I"&> 
Masion V has tabula ted  a funct ion propor t iona l  t o  f ( B )  f o r  t h e  

"(e). 

Exp ( d , 6 )  p o t e n t i a l  over a w i d e  range of reduced c o l l i s i o n  energ ies ,  

I n  Fig,  5 w e  see an example of 

corresponding t o  t h e  case of Figs. 1-4. 

f*cB> f o r  a L. -J. (12,6) p o t e n t i a l ,  
i 

Although the t r u e  t o t a l  cross sdc t ion  ( f o r  reasons pdw-iously 

mentioned) is not  determined within the  c l a s s i c a l  framework, it i s  of 

i n t e r e s t  t o  consider t h e  incomplete total cross  sec t ion ,  namely 

WCJ = - z w ~ > ~ e  ~ r ( 3 )  d e  
4 RR 
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corresponding t o  the total cross section for scattering beyond some 

minimum angle 8 (usually the angular aperture or "resolving power" 

of an apparatus). Just as with the differential cross sections, no 

explicit analytical form can be obtained for 

potential constants but,analogous to Eq, 6, an approximate form is 

available for the case of long-range inverse-power potentials, 

energy dependence of these cross sections is the same as that of the 

differential cross sections (cf. Eq, 6). Tabulations of incomplete 

total cross section functions for the Exp ( O C ,  6 )  potential are 

presented in Ref. 3, 

a(&) in terms of the 

The 

Further information on various classical aspects of elastic 

molecular scattering theory may be found In Refs, 1-3, as well as in 

certain articles in a series by Amdur and co-workeryand elsewhere w 
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111. Resum6 of Quantum Scattering Treatment w 
The standard wave mechanical treatment of scattering by a central 

potential need not be elaborated here. 

terms and outline the procedures required to predict the scattering 

amplitude and thus differential and total cross sections from an 

assumed potential. 

It will suffice to define 

Following Mott aid Masse* the scattering amplitude f(0) is 

defined by the asymptotic equation for the amplitude function y.' 

of the colliding system (i.e., by the behavior of the wave function 

at large interparticle separation r ): 

(111.1) 

where the z axis is the axial direction, 8 the scattering angle 

and k=/CCq/% = 2W/X = [+&/Aa] '* 

number ( is the de Broglie wavelength). The differential cross 

section is given by 

is the incident wave 

and the total cross section by 

(111.2) 

(111.3) 

Using the Rayleigh - Faxen-Holtzmark method of partial waves 
(expanding y.' = r] el(r) (os@) , separating the wave equation, R 
and following standard procedures) one finally obtains the (complex w ) 

szatterizg mplittlde expressed in terms of the phase shifts 9 (a ) :  
'1 
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( I I I . 4 a )  

- - - - -  
W I n  general, t h e  s c a t t e r i n g  amplitude may be considered t o  be t h e  sum 

of a r e a l  and an  imaginary par t :  f (0) = /?e([@) +- kglt9) J 

( I I I .4b)  

(111 .4~)  

where 1 is t h e  o r b i t a l  angular momentum quantum number, !(we> 

t h e  t h e  Legendre funct ion and 

i n  terms of t h e  asymptotic behavior of t h e  

funct ion 5 IP) I r R,(r) : 

A t h  order  phase s h i f t ,  defined 5 
,!th order  r a d i a l  wave 

where 5Lr)  is t h e  s o l u t i o n  of t h e  r a d i a l  equation 

with t h e  inner boundary condi t ion G(0) = 0. Here 

(111.6) 

(111.7) 
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thus r e f e r s  t o  the  % where u(r )=  '*& V(r) . The phase s h i f t  

displacement of t h e  r a d i a l  wave funct ion,  a t  l a r g e  separa t ions ,  

r e l a t i v e  t o  t h a t  of t he  Corresponding A t h  order  sphe r i ca l  Bessel 

what may be termed a "reference" r a d i a l  funct ion i .e . ,  t he  s o l u t i o n  

of Eq. 6 i n  t h e  absence of an in t e rac t ion  po ten t i a l ,  V = 0 (with 

only the  cen t r i fuga l  p o t e n t i a l  term remaining). Thus 5 = &  L A G  
where &. i s  t h e  displacement of ( t he  d i f f e rence  between) 

corresponding zeros of G'[r) and 

r- 

(r) . 
This  d e f i n i t i o n  of the  phase s h i f t  i s  shown graphica l ly  i n  Fig.  6, 

i n  which the  ord ina te  (y) i s  p ropor t iona l  t o  t h e  r a d i a l  wave func t ion  

and the  absc i s sa  (x) i s  t h e  reduced separa t ion  1(z r/b, f o r  a 

L. -J. po ten t i a l .  The displacement Ax (more properly,  evaluated a t  

very l a r g e  x where the  wave funct ion is  s inusoida l )  y i e l d s  d i r e c t l y  

t h e  so-ca l led  "reduced phase" w 7 *- = ?/!Q 

and Wheeler, w which i s  of considerable importance and w i l l  be 

introduced by Ford 

discussed la ter  . 
For t h e  p a r t i c u l a r  case i l l u s t r a t e d  the  phase s h i f t  i s  seen t o  

be negat ive,  corresponding t o  the domination of t h e  r epu l s ive  branch 

of the  po ten t i a l .  Thus, given any r e a l i s t i c  p o t e n t i a l  func t ion  V(r) ,  
6 

one so lves  (by numerical methodsIwthe r a d i a l  equat ion (Eq. 6) for 

successive values  of ,( , evaluating a s u f f i c i e n t  number of phase 

s h i f t s  t o  obta in  convergence ( t o  some spec i f i ed  l i m i t  of accuracy) 

i n  the  sum over For p o t e n t i a l s  with a long-range 

inverse-s ix th  power r a d i a l  dependence i t  i s  found t h a t  q - A 
so t h a t  convergence presents  no p r a c t i c a l  problem. The behavior of 

1 ' i n  Eq. 4. 
-5 

Y 
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t h e  phases as a funct ion of wave number f o r  var ious  r e a l i s t i c  i n t e r -  

a c t i o n  poten t ia l s  has been inves t iga ted  i n  g rea t  d e t a i l  - and 

w i l l  not be spe l led  out  here. 

curve" of 7 vs. 

po ten t i a l  a t  one c o l l i s i o n  energy; l a t e r  on w e  w i l l  i d e n t i f y  t h i s  

p w i t h  t h e  reduced impact parameter l*=$/C i n  connection with 

Fig. 1 d i sp lays  a t y p i c a l  "smoothed 

. Plo t t ed  i s  7* v s . p " p + f l / & ~  f o r  a L.-J. 

t h e  semiclassical  approximation LLy 

For p r a c t i c a l  usage Eq. 2 may be r e w r i t t e n  i n  terns of real 

quan t i t i e s  only, as follows: 

(111.6) 

and Eq. (3) may be reduced using the  or thogonal i ty  of t h e  Legendre 

polynomials t o  y i e ld  the  simple formula: 

(111.9) 

Calculated curves of dcf# land Q(d)] f o r  var ious  real is t ic  

po ten t i a l s  have appeared o f t e n  i n  t h e  l i t e r a t u r  

of 9) p lo t s ,  f o r  an L.-J. (12,6) po ten t i a l ,  are shown i n  

F igs  7 and 8 .  Hawever, an a l t e r n a t i v e  representa t ion  of a quantum- 

calculated angular d i s t r i b u t i o n  i n  the  form ??) appears i n  Fig. 5. 

Suf f i ce  it  t o  say t h a t  t he  d i f f e r e n t i a l  c ross  sec t ions  show 

pronounced os c i  1 lat  ory (d i f f r a c  t ion- l i k e )  behavior, wi th  t h e  

per iodic i ty ,  be,  decreasing wi th  increas ing  wave number. The t o t a l  

c ros s  sec t ions  Q(A) show a general  decrease wi th  increas ing  wave 

number, b u t  o f t e n  exh ib i t  broad extrema (and, a t  very low energ ies  

Examples 
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rather sharp resonances) for reasons to he discussed later. These 

non-classical features will be our main concern in the sections 

which follow. 
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IV. Approximation Methods 

Although the exact quantum treatment of the elastic scattering 

problem (involving direct numerical integration of the radial wave 

equation as described in Sec. 111) has been carried out in full on 

many occasions, suitable approximation methods have always been 

welcomed by workers in the field. In addition to easing the computa- 

tional labor of evaluating wave functions, phase shifts and cross 

sections, the semiclassical approximation techniques nearly always 

add insight into the physics, often enabling certain qualitative 

inferences to be drawn and predictions to be made whfch would not be 

possible otherwise, In certain cases simple approximation formulas 

may be obtained which describe with good accuracy the main features 

of a particular quantum effect under consideration. 

There are, however, various levels of approximation possible and 

these may be arranged in some sort of a hierarchy. 

we shall consider, successively, approximations for 

In this section 

(a) the radial wave function, 

(b) the phase shifts, ~ ( 4 )  
Gt(r) 

I 
(i) phase shifts (no restriction on magnitude) 

(ii) "small" phase shifts. 

Succeeding sections will be concerned with approximations useful in 

regard to 

(c) the scattering amplitude, f ( 0 )  

(d) the interference pattern in 

(e) rainbow scattering, I(0) near 0,. 
(f) low-angle scattering, 1(6) for small e 
( 8 )  the total cross section, 

I(@) 

G(u,) 

. 
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a. The r a d i a l  wave function. 

The Jeffreys-WKBL approximation, r ecen t ly  d e s i g n a t e w t h e  

"asymptotic approximation", AA, f o r  the  r a d i a l  wave func t ion  is 

discussed i n  many texts; w e  will base  our development here on t h e  

presenta t ion  of Landau and L i f sh i t zuk!  As i s  w e l l  known, the  approxi- ; . \ - ;  

mation i s  v a l i d  only i n  the  l i m i t  of a very slowly-varying p o t e n t i a l  

( d  & V(r)/dr a h,),f%all enough de Brogl ie  wavelength lr such 

t h a t  t h e  f r a c t i o n a l  change i n  %') over a wavelength is neg l ig ib l e ,  

With t h i s  assumption the  r a d i a l  d i f f e r e n t i a l  equat ion may be 

s impl i f ied  and an approximate so lu t ion  obtained i n  terms of t h e  A i r y  

funct ion.  The usua l  "semiclassical" r a d i a l  wave func t ions  are 

w r i t t e n  i n  two forms expressing t h e  asymptotic behavior on the  two 

. s i d e s  of t he  classical turning point  r, (but  not  at t h e  turn ing  point  

i t s e l f ,  where a+%): 

Here GR (r) is the  r a d i a l  wave funct ion normalized t o  u n i t  

asymptotic amplitude, Tr i s  the  " loca l  r a d i a l  momentum" given by 

wi th  t h e  e f f e c t i v e  p o t e n t i a l  

(IVa. 2) 

(IVa. 3) 

'p,= is the incident  momentum, 



, 
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( IVa .  4) 

is t h e  loca l  wave number, 

(IVa. 6 )  

and t h e  turn ing  poin t  i s  defined by t h e  

i.e. FA’,) = 0 . (Note t h a t  t h e  semic la s s i ca l  F,(r) d i f f e r s  from 

the  analogous quantum expression (Eq.n.7) i n  t h e  c e n t r i f u g a l  term 

where (j*’,p replaces  A( l+ r ) .  

outermost zero  of F,(r) 

Although Eq. l b  s u f f i c e s  t o  eva lua te  the  phase s h i f t s  (see below), 

.p,(~)= 0 t he  apparent s i n g u l a r i t y  a t  t h e  turn ing  point  as 

disadvantage f o r  c e r t a i n  appl ica t ions .  Of course, t h i s  s i n g u l a r i t y  is 

only an a r t i f a c t  due t o  the  use  of t he  asymptotic forms of t h e  Airy 

in t eg ra l .  

funct ion around the  turn ing  pointwwhich y i e l d s  a s a t i s f a c t o r y  

approximation f o r  t he  wave func t ion  ( e f f e c t i v e l y  jo in ing  Eq. l a  wi th  

Eq. lb )  passing smoothly through the  tu rn ing  point .  

is a 

It may be removed by an a l t e r n a t e  expansion of t h e  Airy 

The so lu t ion  (va l id  f o r  - I  4 2  6 / ) may be represented by w 

(IVa. 8 



17 

i s  t h e  "reduced displacement" from t h e  turn ing  poin t  d 

(IVa, 9) 

i s  propor t iona l  t o  the  force  a t  t h e  turn ing  point .  The numerical 

c o e f f i c i e n t s  a r i s e  from well-known expansion formulas f o r  t h e  Airy 

funct ion.  It i s  r e a d i l y  ve r i f i ed  t h a t  Eq. (7) s a t i s f i e s  t h e  Airy- l ike  

form of t h e  r a d i a l  equation near t h e  turn ing  poin t ,  and p r e d i c t s  q u i t e  

accura te ly  the  pos i t i on  and amplitude of t he  f i r s t  maximum i n  t h e  

wave func t ion  (which occurs very near  Z = 1). 

maximum, 'i.e. , f o r  

a form s u i t a b l e  f o r  numerical computation: 

Beyond t h e  f i r s t  

L > I , one may employ Eq. lb ,  expressed here  i n  

Thus t h e  r a d i a l  wave funct ion may be approximated over t h e  e n t i r e  

range t = - I  by t h e  s ing le  expression 

( I V a .  11) 

where t&= and f i s  some "joining" o r  "mixing" 
5 

funct ion,  for example 

of ,  say, 100, t o  e f f e c t  r a p i d  smoothing. 

,with an 5 value 
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b. The phase shifts 

(i) Phase shifts (no restriction on magnitude) 

The JWKB-approximated phase shifts may be obtained directly 
\6a, b ,14/ 

from the asymptotic form of the AA radial wave function 

Comparing the expressions 

and 

in the limit of large R, we have 

( IVb. la) 

where r is the outermost zero of E(r), a8 usual, For computa- 
0 

tional purposes Eq. 1 may be transformed to the form 

( IVb. lb) 

where y = r /r. 
expanding around the origin, then integrating analytically from 

y = 0 +E ( g e l )  and numerically from E-1. 

The pole in the integrand is readily dealt with by 
0 

Since Eqs. 1 involve only a quadrature whereas the exact solution 

of the radial equation requires direct numerical integration of the 

second order differential equation, the AA phaae shift calculation is 

faster by about two orders of magnitude, For energies high 
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enough ( typ ica l ly  I.(r 5 I ) so t h a t  t h e r e  i s  no more than a s i n g l e  

z e r o  i n  F (r), Le. ,  above the c r i t i c a l  energy f o r  c l a s s i c a l  o r b i t i n g  

(or  quantum mechanical tunneling through t h e  cen t r i fuga l  b a r r i e r ) , t h e  

AA phases are s u f f i c i e n t l y  accurate (ca. 0.1 pe r  cent) f o r  a l l  but  

t h e  most exact ing p r a c t i c a l  appl icat ions.  Except f o r  t h e  l i m i t a t i o n  

t h a t  t h e  absolute  un re r t a in ty  ( in  radians) increases  with t h e  magnitude 

of (it is noted t h a t  f o r  most purposes one requi res  721 modula'V 

wi th  an accuracy of s, 0.01 rad.), t he  JWKB approximation procedure 

imposes no r e s t r i c t i o n  on t h e  size of t h e  phase s h i f t s .  

Tl 
* 

I n  cont ras t ,  

t h e  Born approximation (mentioned below) is v a l i d  only f o r  cases i n  

which t h e  phase s h i f t  is small (e.g. 7 6 -f: rad.)  An a l t e r n a t i v e  

fo rq  of Eq. l b  is \sa, 16/. 
d OD 

( I n *  I C )  

where b-@+$y/hapa Le., the  expression f o r  F( r )  i n  t he  

absence of a po ten t i a l ,  and b is i t s  zero, 
, -  

a~ e 

b = ( p + 1/2)/k.  

S t i l l  another semiclassical  rou te  t o  t h e  phase s h i f t s  e x i s t  w 
but discussion is b e s t  postponed t o  t h e  next s ec t ion  (c). 

* 

(ii) "small" phase s h i f t  

When 1 is s u f f i c i e n t l y  large (e.g. 1 U kR, where R i s  

some "range" parameter of t h e  poten t ia l )  t h a t  t h e  cen t r i fuga l  term 

d m i n e t e s  t h e  e f f e c t i v e  po ten t i a l  (Eq. 3), t h e  wave funct ion %trI 
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approaches very c l o s e l y  the  Bessel form, (0) (r)J and t h e  phase s h i f t s  

approach zero. Massey and Mohrwshowed t h a t  Eq, IC could be 

s implif ied by s u i t a b l y  expanding 

approximated phase 

F ( r )  t o  y i e l d  t h e  J e f f r e y s  (J)- e 

BO t h a t  for  V(r) - - CCL;/r‘ 

b) 
; ) / f [ + S )  A and a has an obvious 

meaning; of s p e c i a l  i n t e r e s t  i s  the  c o e f f i c i e n t  f (6)  = 3 7Y / la.  
Massey and Smithwpointed out an a l t e r n a t i v e  route  t o  the  higher  

order  phases (Eqs. (2) and (3)) v i a  t h e  Born (B) approximation: 

8 
where f ( s )  = iff “- f-[ts- - 

0 0 

Making use of t h e  f a c t  t h a t ,  f o r  l a rge  1 t h e  main cont r ibu t ion  

t o  t h e  i n t e g r a l  arises from t h e  region ou t s ide  t h e  f i rs t  zero of t h e  

Bessel function, ro (where fegl/& ) J  and rep lac ing  t h e  r ap id ly  

o s c i l l a t o r y  p a r t  of t h e  integrand by i t s  mean va lue  beyond (i. e., 

For an (asymptotic) inverse  s i x t h  power p o t e n t i a l ,  t he  J e f f r e y s -  

Born (JB) approximation f o r  t he  higher-order  phases may be written: 
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where I +  1/2 

(e .g . ,  for ,(?.>kR, or) at least 1, L such that T ( L ) k i ) t h e  

accuracy of the JB approximation i s  adequate ( e .g . ,  ,+ 0.01 rad.) 

may often b e  replaced by 1. For suf f i c i ent ly  large 1 

for most applications, V 

.. ,. .. . 

*For an L. -J.. (12,6) potential, Eq. 5 may ba re-written w 
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V. The Scattering Amplitude w 

Ford and Wheeler w extended the Mott-Masse~semic lass ica l  

treatment of the scattering amplitude to yield practical approximatioc 

formulas for f(0) . In the present discussion we shall recapitulate 

the relevant material and develop certain new relations especially 

suitable for molecular scattering applications. 

Starting with the exact expression, Eq. 111.4, for the scattering 

amplitude, restricting 6 to the region € & e +  W-E (where t is an 

infinitesimal angle), making use of the relation 

and the Laplace expansion for the Legendre function for large 1 , 
(valid for sin 8 2 v..t ): 

& 2 )  
we replace the sum by an integral over 1 , use 1 in place of i+k 
and obtain directly the expression: 

where 

Since the terms in the integrand are rapidly oscillating and will 

for the most part, destructively interfere, it i s  appropriate to use 

the method of stationary phasew Here we seek values of 1, say L, 
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f o r  which one o r  t h e  o ther  of the B's are s t a t iona ry ,  e.g., 

(8:)L~ (dl 4% 1 = 0 ; t h e  only s i g n i f i c a n t  cont r ibu t ion  t o  t h e  

i n t e g r a l  a r i s e s  from t h e  regions near  t h e  L I S .  S e t t i n g  B!' = 0 

# / (Eq.  4) w e  have '7''~ - i b L  ; f o r  t h e  condi t ion B 2 :  = 0, 2;s $9' 
where T(Z[$)~ . Referr ing back t o  P a r t  I1 on t h e  c l a s s i c a l  

de f l ec t ion  function, we r e c a l l  t h a t  f o r  ne t  r epu l s ive  de f l ec t ions  

o r  @ > 0 , while f o r  ne t  a t t r a c t i v e  t r a j e c t o r i e s  6 s  -8 0 

(see a l s o  Fig.  le, t o p  ). Thus f o r  t h e  cont r ibu t ions  from t h e  

"a t t rac t ive"  branch of the def lec t ion  funct ion w e  have 7; = f: eL , 
corresponding t o  Bl! = 0, L e . ,  domination of t h e  B1 term i n  

Eq. 3. 

-9  a l s o  

of t h e  B2 term. The general  r e l a t i o n  appl icable  over t h e  e n t i r e  

range of t h e  def lectcon function is  thus: 

For t h e  cont r ibu t ion  from the  "repulsivef '  branch w e  have, 

'711 12 @', corresponding t o  B2' = 0, and thus domination 

' c  

i t  i s  known as  t h e  semiclassical  equivalence re la t ionship .  V 

- - - - -  
wEq. 5 may be ut i l izedwfor  phase s h i f t  evaluat ion by in t eg ra t ion :  

o r  
L k L 

where t h e  nota t ion  i s - t h e  same as  t h a t  used previously.  

a convenient form f o r  t he  ca lcu la t ion  of reduced phases 

(V. Y') 

(V. 5") 

E q .  5" i s  i n  

from a l ready  - 
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available deflection functions. The accuracy attainable is the same 

as that of Eqs. 1Vb.la or 1Vb.l~. It is noted from Eq. 5" that 

attains its maximum value at 
7 

=dau- (cf. Fig. lb bottom). P =% - - - - -  

Returning now to Eq. 3, we follow through with the stationary 

phase procedure. Anticipating 

express f(0) as the sum of the 

two branches of the deflection 

where a,b and c refer (see 

somewhat the final result, we can 

three (possible) contributions from the 

function: 

+ F; (0) 

Figs 1 and 2) to the three regions of 

1 
principle) to the specified angle e ,  Here 2 refers to the outermost 

attractive one, to the inner attractive one and c to the inner 

repulsive one. Of course, if B>6, (where 8, is the rainbow angle) 

there will be only one region of stationary phase, i.e., near c;  
however, we will retain the three terms for generality. 

(or impact parameter) corresponding (by the stationary phase 

For each region, we expand B ( 1 )  around the stationary values 

Thus (for 6<8,)  there will be two stationary values, say La and Lb, 

for the B1 term and one, L for the B2 term. Considering first 

the contribution of the outermost term, fa(t9), we require evaluation 

of the integral involving B1 in Eq. 3. Removing the stationary 

quantities from the integral we obtain 

c '  

s 



For this case, ,a, so that W 

J =(+)?e ip/+ 

L.. 
Making use of Eq. 4, we obtain 

Thus &$(e)= ,qLosB and I i - f * @ ) =  A k B  ; the ratio of the real to 

the imaginary part of the amplitude is thus & f ' ( O ) / I l ~ f ~ @ )  = C d  'B = 

j e+o,n-. 

For the inner attractive contribution, &, 7Lb< 0 
and thus W 

SO that 

For the repulsive contribution, t(e) is given by the analog of 

Eq. 6 with Bp in place of B1. However, '' < 0 , so J is of 7 Lr 
the form (9). Thus we obtain 

(V. 11) 
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Combining Eqs. (8), (10) and (11) w e  ob ta in  

(8 rq v) (V. 12)  

such t h a t  I(6) = # ( @ ) I Z  . U t i l i z i n g  t h e  semic lass ica l  equivalence 

re la t ionship ,  with LayAJky w e  no te  t h a t  t h e  quant i ty  (L,./T'ib )" 
becomes 4[24/$fIK , where - A 8  

A4 
is t h e  s lope  of t h e  d e f l e c t i o n  

-_ 
func t ion  a t  b = bk , similar expressions result a t  L, and Le 

(cf.  Eq. 3 
di 

Recalling the  c l a s s i c a l  r e l a t i o n  'I,lO)* ~ 

I 

of Sec. 11) it is seen t h a t  each of t he  th ree  terms i n  Eq. 1 2  i s  of 

t he  proper form 

(V, 13) 

(where {. . i s  a phase f ac to r )  such t h a t  &(e)= 

t h e r e  w i l l  be  in t e r f e rence  among the  t h r e e  terms, which w i l l  y i e ld  a 

non-classical  angular d i s t r i b u t i o n .  

, However, 

For l a t e r  appl ica t ions  (Sec. IX) it  w i l l  be of i n t e r e s t  t o  

consider  the l imi t ing  form of Eq. 12 f o r  small angles,  s i n 8 g 8  ), 

Referring t o  Fig.' 1 it is  seen t h a t  f o r  small angles the  two inner  

Thus t h e  cont r ibu t ion  of the  last two terms of Eq. 12 may be 

approximated by 
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(V. 14b) 

- 3 f r  i s  t h e  c l a s s i c a l  cont r ibu t ion  from branch b (or c ) ,  and &,=27- - + 

is t h e  phase f ac to r .  Recall ing t h e  c l a s s i c a l  r e s u l t  (no t ing  t h a t  

small angles,  w e  incorpora te  Eq. 14in to  Eq, 1 2  and express  f(0) 

f o r  small angles i n  terms of the dominant long-range pa r t :  

The o r i g i n  of t h e  in t e r f e rence  e f f e c t s  i n  t h e  angular  d i s t r i b u t € o n  

(e, g, , Figs.  5,7-9) is now : .apparent. 
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VI. The Interference Pattern 

For simplicity we restrict the present discussion to angles 5 30' 

(for which we may replace sin 8 by 8). From Eq. V. 15 we obtain 

the following expression for the differential cross section, provided, 

of course, that 8 < 0,: 

(VI, 1) 

(VI. 3) 

Since IJ6) = I@)('', Eq. 1 may be re-written to yield the 
desired ratio p*(e) ': 

The main factor governing the interference pattern in ~ ' ( 6 )  

or I(8) is that involving Y@cos f ; since 1. < 1 for 
2 

I* 
moderately small angles (i, e., 8 not too close to e,), the Y 

term is of lesser importance , The oscillatory product may be 

expressed 

(VI. 5 )  
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From t h i s  eqGation one sees  that  t h e  “wavelengths” i n  the  p a t t e r n  of 

f Y  0) 

wavelengths i s  designated Ab. Thus 

are 2ff/ /~~;L,(  and 21r/(L,+L,) I The s h o r t e r  of t h e  two 

(VI. 6) 

is t h e  angular spacing between successive minima ( o r  maxima) i n  t h e  

o s c i l l a t o r y  func t ion  p*@) . This is, f o r  p r a c t i c a l  purposes, t he  

same as t h e  corresponding spacing i n  I@). It i s  noted t h a t  t h i s  

spacing i s  not independent of angle; s i n c e  La decreases  wi th  an 

increase  i n  8 (see Fig. l), t he  spacing 4 3  increases  with , 

7 

Fig. 9 shows an example of a complicated in t e r f e rence  p a t t e r n  

i n  ‘?*(e), calculatedv f o r  a L.-J. (12,6) po ten t i a l .  The curves r e f e r  

t o  one spec i f ied  reduced c o l l i s i o n  energy K, wi th  var ious assumed 

values  of t he  wavenumber parameter A (or,  a l t e r n a t e l y  s t a t ed ,  f o r  

d i f f e r e n t  values  of t he  quantum parameter A*E 4 = = 21tK “) . c(y(5)y 8% - A 

- - - - -  
* 

The ca l cu la t ions  were made via t h e  semic lass ica l  (AA) phase s h i f t s  

(Eq. lb of Sec. IVb) and t h e  exact summation formula f o r  I(@) 
(Eq. 8 of Sec, IIq) 

For .a given K, t h e  de f l ec t ion  func t ion  @(/3)’ is f u l l y  determined 
, 

(and thus  a l s o  t h e  c l a s s i c a l  d i f f e r e n t i a l  c ross  sec t ion ) ,  so 

d i f f e rences  due purely t o  quantum e f f e c t s  a r e  c l e a r l y  displayed,  

As expected, t h e  pe r iod ic i ty  of t he  o s c i l l a t i o n s  decreases  wi th  

increas ing  wavenumber. Re-writing Eq. 6, w e  see t h a t  
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f o r  any given K. 

pa t t e rn  of Fig. 9 (and of o the r  s imi l a r  curves a t  t h e  same K),  

according t o  Eq. 7. The agreement between spacings predicted (Eq. 7) 

and computed (from f*(e) curves) is nea r ly  wi th in  t h e  accuracy of t h e  

l a t te r  determinations,  except f o r  a few low angle poin ts .  

Figs, 10 shows an ana lys i s  of t he  in t e r f e rence  

Next w e  consider t he  amplitude of t h e  o s c i l l a t i o n s  i n  p'(& 
y(0) is  governed by t h e  claslrical i n t e n s i t y  r a t i o  

or ,  a l t e r n a t i v e l y  expressed, by the  c l a s s i c a l  p*@), 
Eq, 2 shows t h a t  

~ & @ ) / ~ ~ ( e >  
which i s  determined s o l e l y  by K, Thus t h e  amplitude is expected t o  

be independent of the  wavenumber o r  t h e  quantum parameter. 

t o  Eq. 2 t h e  maximum value allowed f o r  

According 

y(@) is 

( V I .  8 )  

Y 
where @I i s  t h e  c l a s s i c a l  va lue  of f*(@ . (The minimum value  

f o r   le) is, of course, -YJ~&.) 
P, 

From Eq. 4, *@) is bounded by P 
(VI .  9) 

(VI .  10) 

It i s  found t h a t  Eq. 10 p red ic t s  q u i t e  w e l l  t h e  envelope of the  

o s c i l l a t i o n s  ,(i.e.,  t he  l i m i t s  on t h e  o s c i l l a t i o n  amplitude) f o r  t h e  

examples of Figs.  5 and 9 .  

Inspection of Fig. 9 shows, i n  addi t ion ,  a very important 
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impl ica t ion  of Eq. 10, i .e . ,  the o v e r a l l  independence of t he  amplitude 

upon wavenumber ( o r  quantum parameter). 

t h ree  terms cont r ibu t ing  t o  the amplitude, we see t h a t  while t h e  

Thus, provided 8 <  er , i. e . ,  

angular  spacing A6 decreases smoothly t o  zero wi th  increas ing  

wavenumber (or  decreasing quantum parameter) a t  constant  K, t h e  

amplitude of t he  quantum in te r fe rences  ( o s c i l l a t i o n s )  remains f i n i t e  

i n  t h e  c l a s s i c a l  l i m i t  ( A = 0 ) .  
Y 

Experimentally, however, small 

v e l o c i t y  inhomogeneities would tend t o  mask the  o s c i l l a t i o n s  when 

AB becomes too  small. 

Following upon Eq. 13 i n  Sec, IV.c, w e  have r e s t r i c t e d  our 

d iscuss ion  t o  small angles ( 06 30' ), but t h e r e  i s  no d i f f i c u l t y  i n  

genera l iz ing  Eq. 13 s l i g h t l y  t o  include t h e  l a r g e r  angle  cases  

provided, of course, t h a t  8 <  6, , by keeping the  f b  and f c  

terms separate .  The smallest angular spacing between minima, A6 , 
then becomes 2 r r / ( L b + 4 )  . Eq. 10 f o r  the  amplitude of ?*'e) 
should s t i l l  be approximately co r rec t ,  wi th  f'@) = 1 + r,(e~+ Ir,Cel , 

e( r,tel 
The conclusion of the  l a s t  paragraph about t he  pe r s i s t ence  of the, 

amplitude of t h e  quantum e f fec t  i s  not a l t e r ed .  

However, f o r  angles  appreciably beyond t h e  rainbow angle  

( @>e,) only one branch of the d e f l e c t i o n  func t ion  ' cont r ibu tes  t o  

f ( 8 ) ; 

r ap id ly  damp au t  i n  t h e  c l a s s i c a l  l i m i t .  This  is t h e  same behavior 

i. e., $,,@I zfe (0) 2 0 . Thus the  quantum o s c i l l a t i o n s  

as t h a t  expected f o r  any monotonic p o t e n t i a l  ( t h e  d e f l e c t i o n  func t ion  

@(&) i s  a l s o  monotonic)in which case I@)= 1 c @ f Z  qJ8) (c f .  Eq. 13) ; 

a fami l i a r  example i s  t h a t  of s c a t t e r i n g  by t h e  r i g i d  sphere 

p o t e n t i a l  , 
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The discuss ion  of this sec t ion  thus confirms the  remark by Ford 

and Wheeler V t h a t  t he re  exists t h e  p o s s i b i l i t y  of deducing information 

regarding t h e  phase angles i n  t h e  s c a t t e r i n g  amplitude by observing 

in te r fe rence  of waves sca t t e red  out of more than  one pa r t  of t he  

incident wave f ront .  
- -.....- - 

Experiments showing these  in te r fe rence  e f f e c t s  

have recent ly  been car r ied  ou w 



33 

V I I ,  Rainbow Sca t t e r ing  3’ 

Ford and Wheeley(FW) applied the  semtclaesical method t o  the  

c a l c u l a t i o n  of the  rainbow s c a t t e r i n g  amplitude f o r  the  genera l  case,  

where @” may be e i t h e r  pos i t ive  or negative. I n  the present  

connection, i .e. ,  for the  atomic and molecular s c a t t e r i n g  problem, 

and thus [d$&) a r e  invariably negafgve; [ky/dia)  = 
? I? 

= 0 by d e f i n i t i o n  of t h e  rainbow condi t ion  and 

is always pos i t i ve ,  For t h i s  s p e c i a l  ~ 4? 

(d3!dp)  I r  = ~ ( d ~ / U ~ t ~  f 
case it seems worthwhile t o  re-der ive and amend t h e  FW r e s u l t s ,  

r e t a i n i n g  the  no ta t ion  of the previous sec t ions ,  

The s c a t t e r i n g  amplitude near t he  rainbow angle  can be expressed 

( V I I .  1) 

where fa and f b  have been combined t o  give t h e  rainbow contr ibu-  

tion to  the . ap l i t ude ,  f r  . The repuls ive  con t r ibu t ion  fc(B> is 

given by 

(VII. 2) 

fr’ where y = 27 - L,# - vz 
assoc ia ted  wi th  the  a t t r a c t i v e  branch of  t h e  d e f l e c t i o n  funct ion,  

, as i n  Sec. V. To evalua te  
C k 

5 we must make use  of t h e  function B1 Of Eq, V.4. Expanding 

i n  the  neighborhood of the  rainbow angle we f ind  

This  i s  accomplished by making use of t h e  expansion 

(VII, 3) 
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@ =  -or . The fact that makes i t  necessary t o  extend the 

stationary phase treatment of Sec. V t o  include the cubic terms i n  

E q .  3. 

-00 

where J p  qp + 1,e - 3%4, 
Airy function, and Ir(@)= /.F;@)l: (The above result (correct) 

for  the phase angle $ d i f f e r s  by -sp't from that quoted by FW.) 

Ai(x) i s  the 

(VII. 6) 
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Since the  p r i n c i p a l  maximum of Ai(x) occurs fo r  xZ-1,  I, le) 
achieves it l a r g e s t  value a t  an angle  s i g n i f i c a n t l y  smaller than t h e  

rainbow angle, namely, where 8 = er - 
t he  low-resolution rainboy ''peak" i s  spread out oyer -an apprec iab le  

angular range and under no conditions (i. e. eve2 a t  hign k ) 

approximates t h e  c l a s s i c a l  sharp "spike" i n  t h e  d i f f e r e n t i a l  c ross  

s e c t i o n  a t  8 = Or, 

'/3 
e As pointed out  by FW, 

The in t e r f e rence  p a t t e r n  near t h e  rainbow angle  is given by 

Eq. 7. The d i f f e r e n t i a l  cross s e c t i o n  o s c i l l a t e s  between the  l i m i t s  

and where 

(VII. 8) 

with  a p e r i o d i c i t y  governed by g- re . Analogous t o  t h e  treatment 

i n  S e t .  V (which yielded E q . T . 6 )  we ob ta in  f o r  t h e  "wavelength" of 

t h e  o s c i l l a t i o n s  i n  t h e  neighborhood of t h e  broad rainbow maximum: 

\ .  

(VLI .  9 )  
AB 

c 

As one progresses  t o  angles appreciably l a r g e r  than  the  rainbow 

a n g l e , t h e  amplitude of t h e  o s c i l l a t i o n s  decreases  and eventua l ly  

the  near ly  monotonic behavior c h a r a c t e r i s t i c  of s ingle-branch 

(non- in te r fe r ing)  s c a t t e r i n g  obta ins ,  On t h e  low angle  s i d e  of t h e  

rainbpw, the  t h r e e  cpnt r ibu t ions  (from t h e  two branches of t h e  

d e f l e c t i o n  funct ion)  always produce in t e r f e rence ,  a s  discussed i n  

Sec. V. 
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It i s  of some i n t e r e s t  t o  note  t h a t  published r e s u l t s  of d i r e c t  

(numerical) computat i o n 3  c*9b'21a'of I@) employing t h e  f u l l  phase s h i f t  

treatment f o r  monoenergetic s c a t t e r i n g  by a L.-J.(12,6) p o t e n t i a l  have 

not  displayed d i s t i n c t  rainbow maxima which show through t h e  

o s c i l l a t o r y  p a t t e r n  (c f .  Fig,  7) .  However, f o r  values of t h e  
* 

quantum parameter A smal.ler than about 0.1, t h e  expected e f f e c t  

appears, q u i t e  pronounced. 

There i s  now ample experimental confirmation of t h e  rainbow 

s c a t t e r i n g  phenomenon i n  atomic and molecular systems v i a  beam 

s c a t t e r i n g  s tud ie s  i n  th ree  l abora to r i e s  . As o r i g i n a l l y  pointed 

out by Masonv measurements of the  energy dependence of 6,. make 

possible  i n  a r a t h e r  d i r e c t  way the  eva lua t ion  of t he  p o t e n t i a l  

V 

w e l l  depth E 

potent ia l .  Su i t ab le  ca l cu la t ions  of rainbow angle  vs. K 

f o r  any assumed func t iona l  form of t h e  i n t e r a c t i o n  

have n w  been made f o r  the  L.-J.(12,6) Exp( o( , 6 ) w  

Kiharawand Morse w p o t e n t i a l  funct ions.  

The r e l a t e d  " tunnel ing-orbi t ing" phenomenon, has a l s o  received 

a c e r t a i n  amount of attentionWbut t h e  sub jec t  has not ye t  been f u l l y  

developed and, f o r  reasons of brev i ty ,  w i l l  no t  be t r ea t ed  here.  



37 

V I I I .  Low-Angle Sca t te r ing  w 
Massey and Mohr w(MM) f i r s t  considered the  problem of the  

l i m i t i n g  form of t h e  low angle behavior of t h e  d i f f e r e n t i a l  

s c a t t e r i n g  c ros s  sec t ion  according t o  quantum mechanics. 

found t h a t  f o r  any p o t e n t i a l  f a l l i n g  of f  f a s t e r  than 

and thus Q is f i n i t e .  

phase (rph) approximation, which i s  e s p e c i a l l y  appl icable  t o  t h e  

p r a c t i c a l  heavy-part ic le  case i n  which a g rea t  many phase s h i f t s  

are required i n  t h e  sums f o r  t h e  c ross  sec t ions .  Since most of t hese  

phases are l a r g e  (compared t o  fr ) and only p r i n c i p a l  values  of t he  

angles are re levant ,  they ( the 7's ) may be considered t o  b e  e s s e n t i a l l y  

random numbers, f o r  O & k + L .  The upper l i m i t ,  L, may be 

est imated f a i r l y  accura te ly  for t h e  r ig id-sphere  case;  here  

L s  kro, where r is t he  r igid-sphere diameter,  

It was 

r-=, I@) 
They also introduced t h e  so-ca l led  randorp- 

I 

0 

Eq. 111.8 may be expressed a s  

With t h e  random-phase assumption ( s t r i c t l y  v a l i d  only i n  the  r i g i d -  

sphere case i n  t h e  l i m i t i n g  case  of very high wavenumber 

' 

i . e . ,  

I n  

w e  

k ro  >>l) t h e  f i r s t  term is n e g l i g i b l e  compared with t h e  second 

due t o  t h e  extensive cance l l a t ion  i n  t h e  o s c i l l a t i n g  s i n 2 7  
A 

term, 

the  l i m i t  6 2 0 ,  upon replacing a l l  terms i n  

obta in  

5 (cos e )  by 1, 

(VIII.  2) 
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(making use of the expression for Q which has been given in Eq. 111.9). 

The quantity ($+r will be designated I@) hereafter. 

z (io e- .9 (*'+r, )r+ a Removing the average value of sin 

we obtain for the rigid sphere case the well-known result 

= I )  
'ph 

"A 

and 

2 Q g2Trr, 

(VIII. 3) 

(VIII. 4) 

(VIII. 5 )  

which is the classical result for the differential cross section 

(classically the scattering would be isotropic with I@). 4 Ga for 

all 8 ). The strong, non-classical forward peak (Eq. 3 ) ,  known as 

the diffraction or shadow scattering contribution, increases in 

magnitude with increasing k but is confined to smaller and 

smaller angles (i. e., 0 By , where 0* is the limiting ang1e)aS k 

&a:.flicreasedw here' 0' 2 fT/Ar , 

and M&rW showed that the shadow scattering contributes 

(approximately) a constant amount, namely 

section of 2nr,=(~q. 4). 

Making use of this, Massey 

f l ~ ~ ,  to the total cross 

Employing the rph-approximation and taking advantage of the 

expansion ~f 5 (cos 0) at small angles, they propose w that the 
low angle differential scattering cross section was of an exponential 

form. It will be instrudtive to derive here the limiting (e-0) 
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functional form of 

appr ox imat ion. 

I(0) within the framework of the random-phase 

As noted in Sec, 111. the scattering amplitude consists of a 

real and an imaginary part 

(VIII. 6 )  

(VIII. 7) 

[It is noted that for the random-phase case (i.e. < S A  27 > = 0)  
rpA 

Re f(0) = 0 ;  thus the scattering amplitude is pure imaginary and 

w = I., #(.)Ia 3 
Setting 8 = 0 and comparing Eq. 7 with Eq. 111.9 we obtain 

the very important general result (known as the optical theorem). 

(VIII. 8) 

from which we derive the useful inequality: 

Thus the (extrapolated) forward differential scattering cross 

section I(0) may never be than &b/W) . This allows a 

(partial) consistency check on experimental measurements of low 

t 

angle differential cross sections and independently-obtained 

(e. g. via attenuation measurements) total cross sections. 

It is convenient to define a dimensionless “forward scattering 

rat io” 
(VIII. 10) 
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It i s  seen t h a t  the quant i ty  b-,)'= l?&o/rmE(o) i s  a measure of t h e  

deviat ion from the  rph-approximation condi t ion,  I n  general ,  the  

f r ac t iona l  p a r t  of t he  forward i n t e n s i t y  due t o  the  r e a l  p a r t  of &) i s  

(VIII.  11) 

tke 
(with j = 1 implying zero f o r A r e a l  p a r t  of the  forward amplitude). 

j(4rJ f o r  t h e  r i g i d  sphere p o t e n t i a l  Fig. 11 shows a graph of 

compared t o  t h e  L . 4 .  (12,6) p o t e n t i a l  ( fo r  a spec i f i ed  value of t h e  

parameter B ) ,  It is  seen t h a t  even i n  the  r i g i d  sphere case a t  

A i kro 2E 25 ( i , e . ,  .,/A r4 ), the  r a t i o  Re f (0) :  

is s i g n i f i c a n t l y  g r e a t e r  than zero 

po ten t i a l  it may exceed 1:l. 

I m  f (0)  

(2 1:5 ) while  f o r  t he  L , - J .  

The undulatory behavior i n  j ( A )  i s  c h a r a c t e r i s t i c  of a r e a l i s t i c  

i n t e rac t ion  p o t e n t i a l  with a minimum (an a t t r a c t i v e  w e l l ) ;  t he  o r i g i n  

of t he  extrema w i l l  be discussed i n  t h e  next sec t ion .  It w i l l  s u f f i c e  

here  t o  c a l l  a t t e n t i o n  t o  t h e  f a c t  t h a t  t h e  v e l o c i t y  dependence of 

t h e  forward s c a t t e r i n g  should show such extrema, wi th  the  magnitude 

of t h e  "excess" i n  j i nd ica t ing  the  f r a c t i o n a l  cont r ibu t ion  of t he  

real pa r t  of t h e  forward s c a t t e r i n g  amplitude which o r ig ina t e s  from 

t h e  rrnon-random" phases. 

Continuing with the  rph-approximation, t he  low-angle d i f f e r e n t i a l  

c ros s  sec t ion  i s  r e a d i l y  evaluated by expanding t h e  Legendre 

polynomial and rep lac ing  t h e  sum over 1 

Thus w e  obtain : 

by an i n t e g r a l  as usual.  
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ekp [ - e y g p l  
(VIII. 12) 

where we have made use of E q s .  2 and 3, i.e. , t“ 2 A’Q/ZT 

and approximated the series 1- x + e. 2 - ... by e’* fk x .g I ,  
L 6  

For low angle scattering by a rigid sphere potential, replacing 

W p L  by Ej-r(0)rt;j , we have 

with j(4rb)+l and 2vrba in the 

limiting case, as a check, we estimate 

total cross section (=2r$) from the 

assuming the exponential approximation 

to 8‘: 

(VIII. 13) 

“classical” limit. For this 

the contribution 4Q to the 

strong shadow scattering peak, 

for I(#) to be valid out 

A* 
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as expected. 

Next w e  reconsider  t h e  important problem of 

an inverse-power p o t e n t i a l  of t he  form v(r)= 
low angle 

- C"'/r s c a t t e r i n g  by 

I n  connection with h i s  measurements of small-angle sca t te r ing ,Pauly  126a/ 

derived an approximate expression ( v i a  the  Massey-Mohr technique) 

f o r  the  d i f f e r e n t i a l  c ross  sec t ion  a t  low angles,  f o r  an inverse  

sixth-power po ten t i a l .  He  obtained 

(VIII.  15) 

with c = 2.08 and j = 1.36. The la t te r  implies  v i a  Eq. 10 a l a rge  

and conetant r a t i o  of t he  real t o  be imaginary p a r t  of the  forward 

amplitude, Re f[O)/Ivn f b )  = 0.6 ; it  i s  l a rge  because of t he  many 

small and slowly-varying high-order phase s h i f t s  associated with t h i s  

long-range po ten t i a l .  The f a c t o r  c i n  t h e  exponent i s  t o  be 

compared t o  u n i t y  f o r  the  rph case;  

source. Helbing and P a u l p A d a n d  Mason e t  a l w  have independently 

repeated and re f ined  the  der iva t ion ,  extending i t  t o  the  general  case 

(E > 5). Thei r  r e s u l t s  a r e  i n  exce l len t  agreement. 

case of s = 6, they obtained j = 1.525 and c = 2.07. (This value 

of j supersedes t h e  less r e l i a b l e ,  e a r l i e r  value quoted above. 

It y ie lds  a s t i l l  higher  r e a l  component t o  the  forward amplitude; 

t h e  r a t i o  k c  fb)/Jhf@) = 0.725 .) 

it o r i g i n a t e s  from t h i s  same 

For t h e  s p e c i a l  

We now o u t l i n e  the  de r iva t ion  of t he  general  case,  following 

For t h e  p o t e n t i a l  above, t h e  higher-  along t h e  l i n e s  of Ref. 26d. 

order  phase s h i f t s  are given by 

( V I I I .  16a) 
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( V I I I .  16b) 

according t o  Eq. IV.b.3, 

Expanding t h e  Legendre (here we c a r r y  only f i r s t  order  terms), and 

s implifying as usual,  Eq. (1) may be wri t ten:  

( V I I I .  1 7  a) 

(S\ 

Factor ing out t h e  most important quant i t ies ,  w e  may express Ite) 

i n  terms of t h e  key i n t e g r a l  J1 and var ious r a t i o s  of i n t eg ra l s :  

( V I I I .  18) 

Before proceeding, w e  note  tha t  J1 

imaginary p a r t  of t h e  forward amplitude and thus  t o  t h e  t o t a l  cross  

sec t ion .  From t h e  d e f i n i t i o n  of J1 and Eq, 7 ( replacing the  

sum by an i n t e g r a l  over 

i s  c l o s e l y  r e l a t e d  t o  t h e  

as usual) ,  w e  deduce t h e  r e l a t i o n s  

( V P I I .  19) 

To  evaluate  t h e  i n t e g r a l s  J1-J4 exac t ly  would r equ i r e  an 

accurate  knowledge of fo r  a l l  A . We may circ-Jmvent t h i s  by 

following t h e  suggestion of Landau and L i f s h i t w t o  replace 9 

7 

1 
by 

[f 
throughout, s ince  t h e  p r inc ipa l  con t r ibu t ion  t o  t h e  i n t e g r a l s  

JB 
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a r i s e s  from t h e  higher-order phases i n  any case. A l l  t h e  J i n t e g r a l s  

may be put i n t o  a common standard form; t h e  r e s u l t s  may be summarized 

as follows: 

( V I I I .  20c) 

Thus 

where, following Mason AWwe have def ined 

(VIII,  22a) 

( V I I I .  22b) 

Squaring terms i n  Eq. 21, and dropping only terms involving 

we obta in  f i n a l l y  

04, 

( V I I I .  23) 
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Elason &t d W r e t a i n e d  the  terms i n  8'and then replaced the  

quant i ty  i n  t h e  second bracket by t h e  exponentia1,yledding a r e s u l t  

which may be expressed i n  our "standard form" 

w i t h v  

(VIII. 15' ; 
VIII. 24a) 

%t i s  noted t h a t  t h i s  r e s u l t  f o r  ' i s  velocity-independent whereas 3 
even f o r  t he  r i g i d  sphere po ten t i a l  (c f .  Fig. 11) 4' v a r i e s  with 

, only approaching constancy (uni ty)  as ?-/re 3 0 .  This  is 

due t o  t h e  s i g n i f i c a n t  f r a c t i o n a l  cont r ibu t ion  of t he  non-random, 

higher  order  phases even i n  t h i s  case;  however, t h e i r  r e l a t i v e  

importance decreases with increasing . 

Here we see t h a t  f o r  t he  inverse s t h  power p o t e n t i a l ,  
I7 f@)/r* .c(o) = hfl(G) . Thus t h e  r a t i o  approaches zero as 

.. 
S+oo ( i , e . ,  t h e  r i g i d  sphere case).  

Helbing and P a u l y ' w r e s u l t  i s  i d e n t i c a l  with Eq. 24; however, 

they express the  r e l a t ionsh ip  s l i g h t l y  d i f f e r e n t l y ;  they  a l s o  

introduce an angle 0: such t h a t  t h e  exponent ia l  may be expressed 
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Fig. 12 shows a typical plotwof the low angle differential 

cross section according to Eq. 24. The important quaqtum feature is 

the leveling off of the differential cross section to a finite value 

as 0-0 . This yields, of course, a finite total cross section 

(in contrast to the classical infinite result) as required; this will 

be discussed further in the next section. 
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. 

Zx. Glory interference Effect at Low Angles 

For a realistic, non-monotonic potential the classical deflection 

function @(b) will always pass through zero at a finite value of 

the impact parameter, say bo; 

it may also go through -IT, -2.T , e t c y  
if the collision energy is low enough 

Classically (Eq. 11.3), 

whenever sine = 0 (provided de/db is finite) a pole (or "glory" d ) 
occurs in the scattering at the appropriate angle (zero f o r  a forward 

glory, 180' for a backward glory). 

For simplicity we consider here only the forward glory, which 

is always found (at all energies) in the scattering by a realistic 

potential. Fig. 1 shows a typical deflection function with the glory 

impact parameter hO=/3,,,cT 

the differential cross section in a graphical way: 

vertical tangent (dB/dC) at 

while Fig. 2 illustrates the effect on 

one notes the 
a 

C = I ( i - c .  8 = 0 )  f& B = & ~ W I  . 

Thus there are two classical contributions to the divergence in the 

forward scattering, one from very large impact parameters (b4oo ) 

and the other from the glory impact parameter, Quantum mechanically 

these interfere, so we must add amplitudes rather than intensities, 

as discussed in Sec, V. In this section we elaborate further on this 

glory interference, with particular attention to its energy-depeqdence. 

Ford and Wheeler w first developed an expression for the glory 
amplitude, making use of the stationary phase approximation. We w i l l  

re-derive their result and combine it with E q . V . 8  for f,(0) 

"outer attractive" contribution to the amplitude. 

the 

This will yield 

an equation (essentially, Eq. VI.1) for the lcw angle scattering 

which correctly takes into account the important forward glory 



cont r ibu t ion  f o r  a r e a l i s t i c  po ten t i a l .  

Eq. VIII, 24a, intended t o  apply only t o  a monotonic (res) po ten t i a l .  

The o s c i l l a t o r y  behavior of t h e  forward s c a t t e r i n g  r a t i o  

It the re fo re  eupersedes 

j ( k )  

(pointed out  i n  t h e  previous sec t ion)  is a d i r e c t  consequence of 

the glory con t r ibu t ion  t o  the  low angle sca t t e r ing .  

The de r iva t ion  of FW is  spe l l ed  out  f o r  a backward glory,  

while we choose here  t o  d e a l  s p e c i f i c a l l y  with t h e  forward g lory  

e f f e c t  and i t s  in t e r f e rence  with the  long-range con t r ibu t ion  t o  t h e  

low angle sca t t e r ing .  

Returning t o  t h e  treatment of Sec. V, w e  note t h a t  i n  t h e  

present  app l i ca t ion  t h e  Laplace expansion f o r  t h e  Legendre polynomial 

is not va l id ,  s ince  8 61'' . We employ, therefore ,  one of t h e  

expansions i n  terms of the  Bessel funct ion,  f o r  example, t h a t  of Hilb w 

v a l i d  fo r  l a rge  1 and small 8 , Here Jo is t h e  zero-order 

Besoel function, 

I n  t h e  neighborhood of t he  maximum phase (or t h e  "glory phase"), 

designated 7 fi,,,) o r  7*(L, )  , w e  expand 7 ( t o  t h e  quadra t ic  

term only 
I* 

where 

(IX. 3a) 

(IX. 3b) 
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Then, upon making the  =sua1 approximations, and proceeding as before,  

using Eqs. V.6b and 9, w e  obtain t h e  g lo ry  amplitude 

where $“ z 2’1, - 3*/u 

(IX. 4b)  

i s  u s e f u l  only f o r  
JO 

with  1 (O)E (%)‘$ . The above expansion of 

w very small angles : 
-/ 

2 
6 6 1  , Eq. 4a  y i e l d s  t h e  important r e s u l t s :  

md (Ix. Sa) 

(IX. 5b) 

We a l s o  recall (from Eq. VIII.7) t h a t  f o r  t h e  long range (outer  

a t t rac t  iue)  contr ibut ion,  

(cf Eq. (VfIIL17b) (Ix. 5.a) 

* 
I n  Eq. 4b t h e  Bessel functibn has been expanded i n  order  t o  d i s p l a y  

t h e  angular dependence of the g lo ry  s c a t t e r i n g  a t  very low angles;  

however, f o r  o?l-’ t h i s  development is  no longer v a l i d  and t h e  

s inuso ida l  expans ion , i s  t o  be used: 
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identical with Eq. V.14, obtained in a very slightly different way. %us 

the same as Eq. V.15; the discussion of the interference effects in 

Sec. VI follows . 

In Sec. VI the interference pattern in the angular distribution 

arising from the glory effect has been analyzed in detail, but an 

important feature was intentionally omitted and reserved for the 

present discussion, namely, the energy-dependence (or velocity- 

dependence) of the forward scattering. 

We have seen in Sec. VI11 that j ( s ) ,  the forward scattering 

ratio for an inverse-s power potential is independent of k 

(Eq. VIII, 24b): j ( s )  = 1 + 5- /  ) , , 80 that .h f@/&?(o) = 

c& (z) = Const.) €bwever, considering the glory contribution 

(alone), this ratio is seen to be tan(2.r - 3%) , fluctuating from 
zero (pure positive real) when .I(&)= 3 W  

imaginary) when YJk)= zlr , to zero again (pure positive real) 
when 't (4)s ;n 

7 ( k ) =  $r, etc. Thus for a non-monotonic, realistic potential 

the forward scattering ratioshould show an oscillatory velocity 

dependence (cf. Fig. 11). The practical implications of this 

conclusion will be discussed in Sec. XI. 

F 

to 00 (pure positive 
m 7  

8 

and to -00 (pure negative imaginary) when 
*I 

* 
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X. Tota l  E l a s t i c  Cross Sect ion W 

Massey and Mohrwwere the f i r s t  t o  develop an approxiqation 

formula ( i n  closed form) f o r  the t o t a l  e l a s t i c  c ros s  s e c t i o n  

appropriate  f o r  heavy-part ic le  s c a t t e r i n g  according t o  an inverse  

s t h  power po ten t i a l .  The usual c ross  s e c t i o n  sum (Eq. 111.4) was 

broken up i n t o  two p a r t s  @M,'Q<+@> ,corresponding t o  two broad 

regions of angular momentum, the f i r s t  (bLd+L) 

s h i f t s  are l a rge  and e s s e n t i a l l y  random, where t h e  rph-approximation 

i s  appl icable ,  and t h e  second ( ,(h L) where they are small (but 

non-random) and f o r  which t h e  JB-approximation is va l id .  The d i v i s i o n  

was a r b i t r a r i l y  made a t  11 L such t h a t  17 
fo r tuna te ly  does not depend very s t rong ly  on t h e  choice of t he  cut-off  

phase i n  the  neighborhood of, say, e/+ . We s h a l l  now o u t l i n e  

b r i e f l y  t h e  MM treatment.  

- 

i n  which t h e  phase 

( L ) I =  $ ; t h e  r e s u l t  
J O  

For t h e  rph region, as usual,  t he  sum i s  found d i r e c t l y :  

Q( 2 

while f o r  

Q, 
t he  JB-region w e  have 

( rep lac ing  l i k  by 

f o r  ~ t ) .  Subs t i t u t ing  f o r  

Eq. IV.b3) w e  ob ta in  

1 , t he  sum by an i n t e g r a l  and s i n  

from Eq. V I I I .  16a (or  7J8 3d 

(X. 3a) 
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where we have utilized the cut-off condition to determine L: 

(X. 3b) 

As expected, Q< dominates; the ratio is only 1: (2s-4). 

Thus the MM cross section becomes 

Substituting for as from Eq.  VIII.l6b, we obtain directly 

where w 

(X. 5a) 

(X. 5b) 

- _ - - -  
* \loa/ 

Typical values of the dimensionless parameter TMM(s) are 

10.613, 7.547, 7.062, 6.771, and 6.296 €or s - 4, 6, 7, 8 and 12 
respectively. 

- - - - -  

A somewhat more accurat w a p p r o x t m a t i o n  treatment is that of 

Landau and Lifshitzy in which the entire Q sum is replaced by 

an integral, and JB phases are used throughout (cf. sec. VIII. 

E q s .  17) 
.o 
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i s  t h e  same as t h a t  of Sec. V I 1 1  (evaluated i n  Eq. VIII.20a).  where J1 

Analogous t o  Eq. 4 above, w e  f ind t h a t  

(X. 8a) 

(X. 8b) 

- - - - -  
Typical  values  of TLL(5) are 11.373, 8.083, 7.529, 7.185, 

s = 4 ,  6, 7,  8 and 12, r e spec t ive ly ,  

* 

and 6.584 f o r  

An i d e n t i c a l  expression for t h e  t o t a l  c ross  s e c t i o n  resul ts  w 
from t h e  app l i ca t ion  of s t i l l  another approximation procedure, 

namely, t h a t  of S c h i f f w  

Landau-Lifshitz (SLL) approximation formula f o r  Q y i e l d s  r e s u l t s  

i n  good agreement with ca lcu la t ions  involving d i r e c t  summation based 

on exact  phase s h i f t s .  

It has been foundwthat t h e  Schi f f -  

The SLL approximation may a l s o  be obtained immediately v i a  t h e  

Bpt ica l  theorem, making use of Eqs. VIII.19 and 20a f o r  I r v t  E @ )  

(and, of course, Eq. V I I I .  16b f o r  as) : $@)= a . 4  , 
y ie ld ing  QsLL d i r e c t l y .  

Q = W x 4= 

For the  important case of s = 5 (Lmdon d ispers ion)  we have 



t h e  r e su l t :  

This  implies yhat a log-log p l o t  of Q(v) should be l i n e a r  with a 

s lope  of -2/5. 

t o  be  appl icable  t o  t h e  t o t a l  c ross  sec t ions  f o r  s c a t t e r i n g  of n e u t r a l s  

(atoms 

inf  h e n c e  of the-  short-range exchange and repuls ive  forces  can be 

neglected. 

apparent (see below). 

This  monotonic v e l o c i t y  dependence would be expected 

o r  molecules ) i n  t h e  thermal energy range, provided t h e  

That t h i s  i s  not t h e  case \6c.3L/will s h o r t l y  become 

One poss ib l e  source of dev ia t ion  i n  the  behavior of t h e  t o t a l  

c ross  sec t ion  f o r  e l a s t i c  s c a t t e r i n g  of neu t r a l s  a t  thermal 

v e l o c i t i e s  from t h a t  predicted by Eq. 9 is  the  neglect  of t he  induced 

dipole-quadrupole and r e t a r d a t i o n  terms i n  ,the long-range p o t e n t i a l ,  

By a d i r e c t  extension of the  rph technique, simple approximation 

formulas have been der ive  w f o r  t he  (separate)  dipobe-quadrupole 

and r e t a rda t ion  e f f e c t s  upon Q . 
Assuming a p o t e n t i a l  of t he  form 

(Eq. 9) is found t o  be SLL t h e  f r a c t i o n a l  co r rec t ion  on Q 

(X. 10) 

(x. 11) 

For a re tarded potentia1,given approximately by t h e  expression 

where a is c lose ly  r e l a t e d  t o  the  " r e t a rda t ion  wavelength" , 

(X. 12) 
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the fractional correction may be shown t o  be  

(X, 13) 

These deviations are small (for most systems of interest)  and 

opposite in  sign. 

region the 

becmicg mere posit ive with increasing re lat ive  velocity,  

For typical atomic systems in  the thermal energy 

deviation ranges from about -5 t o  + 10 per cent, 
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XI. Extrema i n  To ta l  Cross Sect ions w 

( X I .  1) 

We have already noted (Secs. V and IX) t h a t  f o r  a r e a l i s t i c  

po ten t i a l  possessing a minimum t h e  c l a s s i c a l  d e f l e c t i o n  funct ion 

8 ( b )  passes through zero a t  the  glory impact parameter Thus 

J 

t he  phase s h i f t  curve 7(1) exh ib i t s  a broad maximum around 

providing a s i g n i f i c a n t  f r a c t i o n  of non-random phases a t  i n t e r -  

mediate angular momenta, The maximum phase, , increases  with a 

decrease i n  k, and, if the  a t t r a c t i v e  w e l l  i s  deep enough, 7 (A) 

can pass successively through mul t ip les  of 

a l t e r n a t e l y  t o  p o s i t i v e  and negat ive incremental cont r ibu t ions ,  

t o  t he  rph-approximated (MM) t o t a l  c ross  sec t ion .  Thus Q(v) should 

7 m  
m 

I?/.., giving r i s e  

9) 
disp lay  an undulatory v e l o c i t y  dependence ( c f ,  Fig. 13), with t h e  

posi t ions (gnd magnitudes) of t he  extrema determined pr imar i ly  by 

?&A) bnd 7:(4# For any given p o t e n t i a l  one may eva lua te  the  

dependence upon wave number of T* (and 7: ), e i t h e r  by 

d i r e c t  o r  i n d i r e c t  methods, and thus p red ic t  t h e  extrema-veloci t ies  

and extrema-amplitudes. With an assumed func t iona l  form f o r  t h e  

po ten t i a l ,  c e r t a i n  parameters of the  p o t e n t i a l  may thus be deduced 

from experimental observat ions of  t h i s  type, 

The f i r s t  q u a n t i t a t i v e  treatmentwof the  extrema e f f e c t ,  

following i t s  o r i g i n a l  p red ic t ion  w , employed a MM-type semic lass ica l  

ana lys i s .  This  yielded a s  a condi t ion f o r  an extremum t h e  r e l a t i o n  

where 

3.5, ... r e f e r  t o  minima) i n  t h e  dev ia t ion  func t ion  

N = 1, 2, 3, . . . are indices  f o r  m a x i m a  (while N = 1.5, 2 . 5 ,  
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vs. k o r  v. Fig. 14 shows an example of such 

a dev ia t ion  func t ion  f o r  a L.-J.  (12,6) p o t e n t i a l  of spec i f i ed  

parameters. A s i m p l e r  and more exact  de r iva t ion  of the  dev ia t ion  

func t ion  w a s  later derived by D k e n  and P a u l y y  making use  a 
of a SLL-type approximation and tak ing  advantafe of the  o p t i c a l  

theorem (Sec. VII I ) .  We s h a l l  b r i e f l y  o u t l i n e  t h e i r  procedure and 

present  the r e s u l t s .  

Combining Eqs, V I I I .  8, 1 9  and IX.5 w e  ob ta in  the  c ross  s e c t i o n  

as the  sum of the  usual  (SLL) long-range ou te r  a t t r a c t i v e  term and 

an  add i t iona l  glory term: 

= QS'L + AQ 

where 

( X I .  2a) 

(XI. 2 t )  

Thus AQ 

and (a )=  QsLL. 
i s  an o s c i l l a t o r y  func t ion  of 7 (A) ; note  t h a t  <a&>= 0 

m 

Maxima i n  the dev ia t ion  func t ion  4 occur when B 
- L ~ =  5~ , e tc .  Thus the  condi t ion f o r  an extremum may 27* 4 Z J  z 

be expressed, a s  before.  

(m 
(XI. 1) 

where ind ices  N = 1,2,3,. , . def ine  maxima; N = 1.5, 2.5, 3 .5 . .  . 
correspond t o  minima (as  mentioned e a r l i e r ) .  

Eq. 10 i s  q u i t e  general  and ind ica t e s  t h a t  i t  i s  poss ib l e  t o  
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evaluate  the  m a x i m u m  i n  t h e  phase s h i f t  curve, ?*, and i t s  energy 

dependence d i r e c t l y  from observed extrema i n  

The amplitude of the  o s c i l l a t i o n  i n  

Q (v) ,  

AQ/a i s  (from Eq.  2b) 

( X I .  3) 

where the usual  ”reduced” o r  semic lass ica l  no ta t ion  (cf .  Eq. IX.3b) 

has been introduced. 

the  exact (v ia  summation of phases) ca l cu la t ions  of Q f o r  s eve ra l  

r e a l i s t i c  p o t e n t i a l  funct ions,  Eq.  1 has been employed \31.34’in t h e  

ana lys i s  of experimental extrema d a t a  assuming a L. -J. (12,6) 

functionwand E q s .  1-3 i n  connection with a Kihara p o t e n t i a l  

E q s .  1-3 have been foundwto reproduce accura te ly  

W . 
For t he  L. -J. (12,6) p o t e n t i a l  it has been shownwthat t h e  

maximum reduced phase may be approximated by t h e  expression 

0.Y732 3 ( I  - D/+BK) 
m 

where ~z B/A = 2-/&= c cr) 
24iu(7” 

Thus the  extremum condi t ion i n  ~ / a  may be expressed (in &;5 c**): 

where u i s  t h e  ve loc i ty  of t he  Nth extremum; thus a p lo t  of N 

N-Zg v s  cN-I 

confirm the index assignments) with t h e  i n i t i a l  s lope  y i e ld ing  t h e  

&I- product (c f .  Fig. 14) or,  a l t e r n a t i v e l y ,  t he  r a t i o  C’yCc, 

should pass through the  o r i g i n  ( serv ing  t o  
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For other  p o t e n t i a l s  E q s .  4 and 5 d i f f e r  somewhat (although the  

dependence of t he  leading term i n  E q .  14 i s  completely g e x r a l ,  

following from t h e  U-' func t iona l i t y  of t h e  J B  phase shi f t  @q.IV,b.3)).  

Thus a s l i g h t l y  d i f f e r e n t  form of Eq.  15 resu l t s  i n  each case. I n  

Ref. 33 t abu la t ions  of yy(k$, plmd $' a r e  presented f o r  the Kihara 

(12,6) p o t e n t i a l  with d i f f e r e n t  values  of the  parameter d 
m 

( -0 .3 L, d C 0.5) , i n c h d i n g  CA = 0, t h e  L. -J. (12,6) case;  t hese  

4&?/&, 

are a l l  charac te r ized  

may be employed i n  expressions f o r  t h e  devia t ion  func t ion  

I n  any case, extrema p l o t s  of N - ,$ a. - I  

by a l i m i t i n g  l i n e a r  behavior a s  5 - I - - +  0 I 

The o s c i l l a t o r y  graphs of A Q / ~  VX, have been termed w 
e l a s t i c  atom-atom impact spectra ,  I n  such a p l o t  (cf. Fig. 14) the 

extrema a r e  approximately evenly spaced ( a t  high v e l o c i t i e s )  so t h a t  

t h e  indexing of the extrema i s  r e a d i l y  accomplished, 

(realist ic interatomic)  po ten t i a l  with an asymptotic r form, i f  

FOP a 

-6 

one p lo t s ,  as a func t ion  

p o t e n t i a l  constant, C (6) 
aPP  

-1 of v , t h e  "apparent" value of the  

, calculated from Q v i a  E q .  X.9:  

(16) 

(where 

o s c i l l a t o r y  ffspectrum'f. The average value of C (6) over t h e  

thermal energy range i s  the t r u e  value of 

averaging i n  e f f e c t  eliminates t h e  inf luence  of t he  short-range 

v, Q and C a r e  i n  cgs u n i t s ) ,  one obtains  a s imi l a r  

aPP 
C(6). Thus, ve loc i ty -  

forces  upon the  t o t a l  e l a s t i c  s c a t t e r i n g  c ross  sec t ion ,  enabl ing one 

t o  eva lua te  t h e  long-range a t t r a c t i v e  constant C(61 d i r e c t l y .  

Af te r  assignment of indices it i s  poss ib le  t o  a s c e r t a i n  absolu te  
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experimental values of the maximum 

or k from Eq. X I . l .  The experimental results mayAbe concisely 

expressed in the form of an expansion of 7m in powers of v , -3: 

phase, ym, as a function of IT 
t h  

-1 

- -1 - 2  4, - al v - a2v + ..... 

where 
(4) -5 A, = c c r, , with c a numerical constant dependent on the 

assumed functional form of the potential. Thus, since elastic 

atom-atom impact spectra yield both C (6) and a 1 (and with less 

accuracy, a*), for a given functional form of 

to evaluate r (and thus E ) .  

V(r) it is possible 

m 



X I I .  M a x i m a  i n  Impact Spectra  and t h e  Bound States w 

~ 

The r e l a t ionsh ips  between d i f f e r e n t i a l  and t o t a l  e l a s t i c  c ros s  

sec t ions ,  extrema-veloci t ies  (and amplitudes) and t h e  i n t e r a c t i o n  

p o t e n t i a l  have been discussed i n  previous sec t ions .  Given a two-body 

I p o t e n t i a l  func t ion  thus derived from s c a t t e r i n g  experiments, i t  is 

I -  

only a matter of straightfcxward computatio w t o  eva lua te  the  energy 

l e v e l s  corresponding t o  a l l  t he  d i s c r e t e ,  v ib ra t ion - ro t a t ion  states 

of t h e  composite system. There i s  a l s o  a well-known r e l a t i o n  \14/ I .  
I between t h e  bound-state energies and t h e  poles  i n  t h e  s c a t t e r i n g  

~ 
amplitude as a funct ion of k, the (complex) wavenumber, occurr ing 

I , i n  t h e  upper half-plane.  
I 
I 
I However, only r ecen t ly  has it been pointed out"that a r a t h e r  

d i r e c t  r e l a t i o n s h i p  e x i s t s  between the  bound states and t h e  extrema 

i n  the t o t a l  cross sec t ions ,  i . e . ,  t h a t  t he  m a x i m a  i n  the  e las t ic  

atom-atom impact spec t r a  serve a s  of t h e  v i b r a t i o n a l  states 

I of . t h e  di-atom. 

A b r i e f  o u t l i n e  of t h i s  development follows. Assuming t h e  usua l  

semic lass ica l  condi t ions it i s  seen t h a t  t h e  maximum phase 

increases  monotonically with decreasing k, while  t h e  angular 

Lo' 
I *  momentum quantum number corresponding t o  t h e  maximum phase ( i . e , ,  

o r  1, ) decreases  smoothly t o  zero  as k-0. Thus, as t h e  

approaches progress ive ly  c l o s e r  t o  t h e  

This,  i n  tu rn ,  approaches i t s  
4, wavenumber i s  decreased 

s-wave (1 = 0) phase s h i f t ,  

zero-veioci ty  l i m i t  according t o  Levinson's.  theore% 

7 (k). 
0 

(XII. 1) 

61 
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Here is the number of discrete levels of zero angular momentum, 

i. e., the number of (rotationless) vibrational states of the di-atom. 

As discussed in the previous section, a maximum in the impact spectrum 

occurs once -6or each time (A) passes through integral multiples 

of W (more accurately, when ym= ST Tq etc.); thus the total 

number of maxima should equalithe number of bound states, no 

TI, 

'i? 

Unfortunately, the semiclassical approximations become less 

valid as k is decreased, In addition to the onset of the violently 

non-classical orbiting-tunneling phenomenon at low energies, another 

difficulty arises due to the failure of the statistics for the 

random-phase approximation (we recall that the number of non-negligible 

phases is roughly 245 

has no validity). Thus the above bound-state relation is not a 

rigorous one; indeed we may anticipate a certain degree of sharp 

"fine structure" in the impact spectrum at sub-thermal energies, 

probably unresolvable experimentally. Nevertheless, there remains 

a rigorous and direct correlationwbetween the low-index (high k) 

extrema and the low-lying vibrational states (f-&m n a m b c r  V) : 

, so that for & r , b l O  the rph assumption 

N - 1 -  v (XII. 2) 

A re-statement of the bound-state rule which should be suitable 

for application in any experimentally feasible situation is as 

follows: 

The observation of - m maxima in the elastic atom-atom impact 

spectrum implies the existence of at least m vibrational states 

for t h e  di-atom. 

- 
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The preceding considerat ions have been appliedw t o  experimental  

extrema observations.  I n  a11 cases f o r  which t h e  "capacity" of t he  

w e l l  f o r  bound s t a t e s  (no) was known from t h e  p o t e n t i a l  parameters 

i t  was found t h a t  m L, no (ne i ther  the  number of maxima observed 

nor the  highest  index assigned exceeded tk t h e o r e t i c a l  capacity, no) ' 

It i s  c l e a r  t h a t  t h e  above "level-counting" technique is not 

dependmt QE the d e t a i l e d  shape of the  p o t e n t i a l  (so long as t h e  

w e l l  has a ''capacity" f o r  one o r  more bound s t a t e s )  and should be  

genera l ly  appl icable  t o  systemsv involving ground s t a t e  atoms, 

metastables  and/or ions.  

- - - - -  
\g/Extension t o  systems involving molecules involves c e r t a i n  obvious 

complications,  inc luding  i n e l a s t i c  e f f e c t s .  C f .  Sec. XIII. 

- - -Examples of systems (other  than those analyzed i n  Ref. 34) for 

which scattering-bound s t a t e  experiments and/or ca l cu la t ions  of 

t h i s  type have been ca r r i ed  out  a r e  as fol lows:  

K + K r  ( IS , )  + KKr(=Z+) (exp. + c a l c s . )  

L i  ('Lsvr) + Hg ('So) -+ LiHg &*) (exp. + ca lc s . )  

H e  ( 'SI) + X e  ( 'So) + HeXe(3z+) \39/ (exp.) 

He('S,) + Li + ('so) - H e L i + ( ' Z j w  ( ca l c s . )  
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XIII. Influence of Concurrent Inelastic Processes. 

The subject of inelastic collisions of atoms and molecules is 

Nevertheless it seems not within the scope of the present chapter. 

worthwhile to consider briefly the question of the influence of 

concurrent inelastic scattering upon the elastic scattering behavior 

of molecules. 

The simplest situation is the one in which the scattering is 

inelastic but non-reactive. Here it is known that rotational 

excitation (and de-excitation) is the most probable path of energy 

transfer between translation and internal modes. 

has recently reviewed in great detail the theory of rotational 

(and vibrational) transitions in molecular collisions. For the 

purpose of illustration here we shall confine our attention to the 

special case of the atom-diatomic molecule s y s t e p  following the 

T a k a y a n a g w  

s -matrix formalism of Arthurs and Dalgarnow for scattering by a 

rigid rotor. 

- - - a -  

* Detailed calculations for the system He-H2 have been 
by Roberts$? In addition, the formal procedurwhas 

carried out 

been 

generalized by Davisonw to the diatomic-diatomic case, who 

presented calculations for the H -H pair, 2 2  
a _ - - -  

The total cross section for the transition j+j’ may be 

expressed: 



where the transition probability is 

(XIII- 1) 

(XI I I - 2) 

Here J is the total angular momentum quantum number (conserved 

in the collision) and 

from state d = j , d  to state /3 Sj ’J ’  at given J, defined in terms 

of a radial wave function with asymptotic form: 

bT 
Shjd the S-matrix element for the transition 

(cf. Eq. 111.5). Here v is the relative velocity associated with 

. the incident channel (. = = @E479 1% h~ a~ud) and v’ 

the corresponding outgoing relative velocity, given by 

(XI1 1-4) 

where AE is the endothermicity of the transition and k‘ is 

the exit channel wavenumber. 

radial differential equations will not be reproduced here, 

The standard expressions for the coupled 

Under semiclassical conditions and with the assumption of strong 

interchannel coupling, a statistical method (analogous to the rph 

procedure) may be enployed to approxinate the transit ion 

probabilities; one merely calculates the expectation values for the 
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J 

(mod-squared of the)  S-matrix elements. 

u n i t a r i t y  of t he  S-matrix, one f i n d s  t h a t  f o r  

Taking advantage of t he  

N J coupled channels 

so t h a t  f o r  f j  # o( 

For /3=d (elastic s c a t t e r i n g )  it i s  faund t h a t  

(XI11 - 5) 

(XI I1 - 6) 

From these  r e s u l t s  i t  follows t h a t  t h e  total  (elastic p lus  

i n e l a s t i c )  c ross  s e c t i o n  f o r  s c a t t e r i n g  t o  a l l  e n e r g e t i c a l l y  open 

channels from s t a t e  J , i .e . ,  Qe E CQ(j; j) 9 is 
i' i 

independent of the  number of coupled channels and i e  given 

(approximate1y)by a formula i d e n t i c a l  t o  t h e  Maesey-Mohr 

formula (Sec. X) (which r e fe r r ed ,  of course, t o  t he  t o t a l  e l a s t i c  

rph 

c ros s  sec t ion  i n  t h e  absence of i n e l a s t i c  s c a t t e r i n g ) .  A l t e rna t ive ly  

expressed, it is  found t h a t  t he  e l a s t i c  c ross  s e c t i o n  is  reducedwby 

an amount j u s t  equal t o  the  i n e l a s t i c  c ros s  sec t ion ,  such t h a t  

- - - - -  
d S i n c e  the r a t i o  

(XIII- 8) 

(XI I I- 9) 
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from Eqs.  5 and 6 ,  the total inelastic cross section can never exceed 

' the total elastic cross section, i.e. 

I ( X I I I -  lo)  
2 '  

Q f"" 
Q tot 

Q J 

q:' 
- 1 a-d J & -  . ,  

I -- L - - --- ---- 
This result, i. e. "conservation" of total cross section, 

obtained with a minimiin of restrictive assumptions, may well have 

general validity (e.g., extension to the polyatomic case, as well as 

inclusion of vibrational excitation) in the field of non-reactive 

mole'cu lar scat: terisg. 

, I  

? ,  

I .  I 

For the most general case in which chemically reactive scattering 

is concurrent, the situation is, of course, much more complicated. 

Reactive scattering is always accompanied by elastic scattering 

(as well as inelastic transitions) so a rigorous treatment is 

expected to be formidable, 
. ,  

It is not appropriate here to review the 

literature in what may be termed the fundamentals of chemical reaction 

kinetics, but it is relevant to reference the basic collision-theory 

treatment of Eliason and Hirschfeldewkhich introduced the concept 

of the ffmultichannel" differential chemical reaction cross section) 

and the important S-matrix formulation of Smithw. It appears, 

however, that the question of the influence of the reactive scattering 

upon the elastic scattering has not yet been considered in detailbd 

In order to obtain a qualitative answer to this question we 

explore the utility of the optical model for reactive scattering. 

~ 2 r e  the interaction potential is assumed complex: 

i. 
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with t h e  imaginary pa r t  responsible f o r  the absorption ( i . e . ,  reac t ion) .  

Without speculat ing here  on the  o r i g i n  o r  funct ional  form of r d ( r )  
we merely recognize u tha t  t he  inc lus ion  of t h i s  term w i l l  y ie ld  

complex phase s h i f t s  and thus r eac t ive  sca t t e r ing .  

6 4  

We make use of t h e  phenomenological " d i f f r a c t i o n  theory" 

treatment of Greider and G l a s s g o l d w  To begin with, w e  consider 

as a f i r s t  approximation the  "black-sphere" mod'el (developed long 

ago for  the  s c a t t e r i n g  of neutrons by nucleons) . w 

- - - - -  
d S e e ,  for  example, Ref .  14, Sec. 117; the  s w a l l ~ a n g l e  result is t h e  

same as  t h a t  of Ref, 40, Eqs. V-1,2 f o r  simple d i f f r a c t i o n  sca t t e r ing .  

S t a r t i ng  with 

(XIII- 12) 

w e  have fo r  the t o t a l  e l a s t i c  cross  sec t ion  

(XIII-13) 

f o r  t h e  t o t a l  r eac t ive  ( i n e l a s t i c )  c ross  sec t ion  
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(where 

section 

t f -131 a is the "opacity'yand for the total cross 

Assuming total absorption for all f.C LzAR (where R is the 

sphere radius) g d  90 icteractioyfor A A L ,  we have 

SA = 0 f k  A < L  

S A =  f ' 48-r A I L  
(XIII-16) 

I .  
, .  

a '=  Q C ' =  nL's& (XIII-17) so that - 
A= 

- - - - -  
* 

For small angles this leads to a pure imaginary scattering 

amplitude (n.b. : contrast with the Boin approximation result; lwne/y, 

pure real forward amplitude), 

we note that Imf(0) = L2/2k - (XIII- 18b) 

Thus we have the standard formula for "diffraction scattering": 
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(XIII-18~) 

Thus it is seen that the black sphere model (Eq. 17) gives the 

same "conservation" result as Eq. 8, namely 

(XIII- 19) 

(recalling Eq. X. 1 for Q, ). 

the existence of inelastic,scattering necessarily implies 

However, although it is true that 

concurrent elastic (or "shadow") scattering, the earlier restriction 
Q'-ya el  

S f  

(complex) potential with its associated complex phase shifts. 

no longer applies in the case of an absorptive 

3 )  Re-writing <.ey r e h k - t n  

(XI 1 I - 20) 

where M1 and PA are real (noting that OeflA L, I ) Eqs. 13-15 

become 

c 
(XIII-22) 
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Assuming maximum opaci ty  (pi = f ), Eqs, 21-23 c o r r e c t l y  y i e ld  

Also, as expected, t h e  black sphere r e s u l t s  (Eqs. 1 7  and 19). 

assuming zero opac i ty  throughout, a" 0 and at'= . Moreover, 

i f  

bt 

fat 
( c a ~  5 ) = O  , then = Or+ as it should, 

However, an i n t e r e s t i n g  p o s s i b i l i t y  arises f o r  intermediate  

opac i t ies :  namely, it is readi ly  poss ib l e  t o  ob ta in  &' a='! 
For example, assuming d ' = O  and PA constant  throughout 

(independent of A i n  t h e  range D L  1 L ) ,  w e  have f o r  t h e  r a t i o  

of elastic t o  r e a c t i v e  cross  sec t ions :  

(XI I I- 24) 

so t h a t  t h e  i n e l a s t i c  cont r ibu t ion  exceeds the  elastic f o r  any 

A < 1 . The r a t i o  Q%v decreases  toward zero  a s  t h e  opac i ty  .C( 

is decreased (with a concomitant reduct ion of t h e  t o t a l  cross 

sec t ion  toward zero,  of course, i n  t h e  l i m i t  of PA 0 ), Thus 

w e  conclude t h a t  it is e n t i r e l y  poss ib l e  f o r  t h e  to ta l  r eac t ion  

c ros s  sec t ion  t o  exceed one-half of t he  t o t a l  s c a t t e r i n g  c ros s  

sect ion! 

Returning once again t o  the  quest ion of the  inf luence  of t he  

r e a c t i v e  s c a t t e r i n g  upon t h e  elastic c ross  sec t ion ,  w e  may 

immediately obta in  an approximate s o l u t i o n  i f  w e  assume u n i t  

o p a c i t y  f o r  A <L , while a l l  remaining phase s h i f t s  

are unaffected,  i .e. ,  pure real, and the same as would ob ta in  i n  

the absence of i n e l a s t i c  sca t te r ing .  

(1 L) 
-!A 

Employing t h e  generalized opt ical  theorem (Eq. 15) 
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we have 

( X I I I -  2 5) 

where the first term on the right represents the contribution from 

I <  L , i. e., the diffraction scattering, and the second one from 

,( & L  , i.e. the residual elastic scattering. Provided L is 

less than the MM-tph "cut-off" angular mentum, we have 

while 

so that 

which seeme ktkdepedent of model is expresdble by the rather weak 

inequal 0 t p 

t o t  
Q"= Q - Q r  Q,,, . 

(XI f X  - 2 8) 



influence of the reactive scattering on 

elastic scattering cross section. This 
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the wide-angle differential 

is manifested as a loss in 

the elastically scattered intensity at large angles (corresponding to 

small impact parameters), predictable on the basis of simple semi- 

classical considerationx In terms of the present model, this 

corresponds to a (rather abrupt) gain in opacity (say, from 0 to 0.9) 

for angular momentum (impact parameter) leer than some critical value, 

* 
This effect has been observed and exploited by Greene and B o e H  

in connection with their reactive scattering studies. 
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XV. Figures 

Legend f o r  Figures  

1. a. Top: Dependence of t he  d e f l e c t i o n  func t ion  upon the  reduced 

impact parameter z&/r , f o r  a L. -J. (12,6) p o t e n t i a l ;  here  

the reduced r e l a t i v e  k i n e t i c  energy K = e V , z / c  

from t abu la t ions  i n  Ref. la. b. Bottom: The corresponding 

dependence of t h e  semic lass ica l  reduced phase Tu upon t h e  

reduced impact parameter 4 f o r  t h e  same case. Note the  

= f -6  ; 

minimum i n  t h e  d e f l e c t i o n  func t ion  a t  fJ =p, = 1.52 r d . ,  

(corresponding t o  a "rainbow angle" er = 8 7 " )  

i n  t h e  reduced phase curve at /3 = p,,, = 1.24, which is a l s o  t h e  

f i r s t  zero of t he  d e f l e c t i o n  funct ion.  

and t h e  maximum 

2. A BC p l o t  f o r  a L.-J.  (12,6) p o t e n t i a l  with K = 1.6. Here 

B3/%* 
sum of t h e  absolu te  values  of t he  s lopes  of t h e  con t r ibu t ing  

branches. For i l l u s t r a t i o n ,  a t  8 = 60°, t h r e e  branches 

(a,b and c )  con t r ibu te ;  f o r  8 =  or = 8 7 O  only one branch 

cont r ibu tes  t o  I ( 0 ) .  

and C = cos 8 ,  so t h a t  I" (e) i s  obtained as the  

* 
* 

3. A p o l a r  p l o t  of I ( e )  f o r  s c a t t e r i n g  by a L. -J. (12,6) p o t e n t i a l  

w i t h  K = 1.6. The outer ,  ( so l id )  curve corresponds t o  I (e) 

d i r e c t l y ;  t he  inner  one (dashed) has been p l o t t e d  as +r%> 

* 

I n t e n s i t i e s  f o r  d<t l "  are not  shown. The rainbow e f f e c t  a t  

87' i s  evident .  
* 

4. A log-log p l o t  of I (e) f o r  s c a t t e r i n g  by a L.-J .  (12,6) p o t e n t i a l  

with K = 1.6  (cf. Fig.  3 f o r  t h e  same case). Note t h e  l i m i t i n g  

low-angle l i n e a r i t y  cons is ten t  wi th  a long-range r-' po ten t i a l .  
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5. PloL of f*() , from 0-30°, for scattering by a L.-J.(12,6) 
potential with K = 1.6 (cf. Figs. 3,4 for same case): The 

dashed curve is the classical result; the solid curve is a 

quantum mechanical calculation for the same R, with 

B 2'000 Ifl A* ~ ? / C ( Z , U E ) ~ ~  s 0.14). 

6. Typical radical wave function $[r)cc j(x) [solid curv.1 

for L. -J. (12,6) potential; here K = 3.2, 1 = 4, and 

A P kcr = 20,  B z 2iea7ka = 125. 

* =AT (see text). Since x = r/c 

point (inner inflection point in the radial wave function) 

; 

(See Ref. 6c), 

The classical turning ' 7  

is designated on the figure. The dashed curve i r  the "reference" 

wave function, y #: A x . j l ( A x ) .  

7. Semilog plot of I(@ for scattering for a L . 4 .  (12,6) potential; 

K = 1.6, B f 125 ( A* = 0.56, A = 14. l), comparing quantum with 

classical calculations. Note region of rainbow scattering! 

8. Semilog plot of I(0) as in Fig. 7 for K = 0.31, B - 2000 
( A* = 0.14, A = 25). For K 4 0.8, no rainbow scattering 

effect (classical orbiting only). 

9, Interference pattern, p*(O), calculated for scattering by a 
L . 4 .  (12,6) potential at constant 

of A: 20, 40 and 80, corresponding to values of the quantum 

parameter A* 5 2nKy/A of 0.421, 0.210 and 0,105, 

respectively. 

(with increase in A) but no significant decrease in the amplitude 

of the oscillations as the classical limit is approached, 

K 0 1.8, with various values 

Note the decreasing wavelength of the oscillations 

10. a. Correlation of interference spacings de obtained from 
u'n 
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ca l cu la t ions  of p'[&) obtained from ca lcu la t ions  of 

similar t o  those of Fig.  7, K = 0.8 and 1.8. 

b. Detail f o r  K = 1.8 f o r  var ious values  of A: 

corresponding, respec t ive ly ,  t o  

0.168, 0,140. The product A de i s  p lo t t ed  vs.  8 ,  and 

compared with t h e  t h e o r e t i c a l  curve: 

(Eq.n.6). 

10,20,30,40,50,60, 

A* = 0.842, 0.421, 0.281, 0.210, 

A A e  = 2e/[p6+&) 

11. Plot  of t he  "forward s c a t t e r i n g  r a t io"  j vs. A (=&)for t he  

r ig id  sphere p o t e n t i a l  and f o r  t h e  L.-J.(12,6) p o t e n t i a l  with 

B = 125. 

12. Log-log p l o t  of I(0) at  very low angles ,  c a l c u l a t e  w a c c o r d i n g  

t o  Eq. 24 (quantum), compared wi th  t h e  c l a s s i c a l  r e s u l t .  The 

ca lcu la t ions  refer t o  the  K-Hg system at a r e l a t i v e  v e l o c i t y  

4 -1 -57 6 of 6.35 x 10 cm sec , assuming C(6) = 8.1 x 10 e r g  cm 

based on t h e  d a t a  of Pauly (Z. angew. Phys. 9,  600 (1957)). 

13. Log-log p l o t  of Q(v) ca lcu la ted  f o r  a L. -J .  (12,6) p o t e n t i a l  

with B = 125. The s t r a i g h t  l i n e s  represent  t h e  SLL(6) and 

SLL(12) approximations. (For add i t iona l  d e t a i l s  s e e  Ref. 31a). 

14. Extrema p l o t  f o r  L.-J .  (12,6) po ten t i a l ,  wi th  B = 650. The 

J ) [ E z )  while upper curve shows the  dependence of 

the  lower curve shows t h e  indexing of the  extrema. 

addi t iona l  d e t a i l s  s ee  Refs. 25, 31, 34). 

A q g  
(For 
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